References
1. Acton RJ, Bourne E, Bell J, Lillycrop K, Wang J, Dennison E, Harvey N, Spector TD, Cooper C, Bell CG: The Genomic Loci of Specific Human tRNA Genes Exhibit Ageing-Related DNA Hypermethylation. bioRxiv 2019, :1–4810.1101/870352Available: https://www.biorxiv.org/content/10.1101/870352v1.
2. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M: Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. The Lancet 2017, 389:1323–133510.1016/S0140-6736(16)32381-9Available: http://dx.doi.org/10.1016/S0140-6736(16)32381-9.
3. Niccoli T, Partridge L: Ageing as a risk factor for disease. Current Biology 2012, 22:R741–R75210.1016/j.cub.2012.07.024Available: http://dx.doi.org/10.1016/j.cub.2012.07.024.
4. Belikov AV: Age-related diseases as vicious cycles. Ageing Research Reviews 2019, 49:11–2610.1016/j.arr.2018.11.002Available: https://doi.org/10.1016/j.arr.2018.11.002.
5. Fleming DM, Elliot AJ: The impact of influenza on the health and health care utilisation of elderly people. Vaccine 2005, 23:S110.1016/j.vaccine.2005.04.018.
6. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B: Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. The Lancet 2012, 380:37–4310.1016/S0140-6736(12)60240-2Available: http://dx.doi.org/10.1016/S0140-6736(12)60240-2.
7. United Nations, Department of Economic and Social Affairs PDivision: PopulationPyramid.net. Available: PopulationPyramid.net.
8. Goldman D: The Economic Promise of Delayed Aging. Cold Spring Harbor Perspectives in Medicine 2016, 6:a02507210.1101/cshperspect.a025072Available: http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a025072.
9. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R: A C. elegans mutant that lives twice as long as wild type. Nature 1993, 366:461–46410.1038/366461a0Available: http://www.ncbi.nlm.nih.gov/pubmed/8247153.
10. Medvedev ZA: An Attempt at a Rational Classification of Theories of Ageing. Biological Reviews 1990, 65:375–39810.1111/j.1469-185X.1990.tb01428.xAvailable: http://doi.wiley.com/10.1111/j.1469-185X.1990.tb01428.x.
11. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G: The hallmarks of aging. Cell 2013, 153:1194–21710.1016/j.cell.2013.05.039Available: http://www.ncbi.nlm.nih.gov/pubmed/23746838.
12. Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD: Nuclear Genomic Instability and Aging. Annual Review of Biochemistry 2018, 87:295–32210.1146/annurev-biochem-062917-012239Available: https://www.annualreviews.org/doi/10.1146/annurev-biochem-062917-012239.
13. Casagrande S, Hau M: Telomere attrition: metabolic regulation and signalling function? Biology Letters 2019, 15:2018088510.1098/rsbl.2018.0885Available: https://royalsocietypublishing.org/doi/10.1098/rsbl.2018.0885.
14. Pal S, Tyler JK: Epigenetics and aging. Science Advances 2016, 2:e160058410.1126/sciadv.1600584Available: https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1600584.
15. Santra M, Dill KA, Graff AMR de: Proteostasis collapse is a driver of cell aging and death. Proceedings of the National Academy of Sciences 2019, 116:22173–2217810.1073/pnas.1906592116Available: http://www.pnas.org/lookup/doi/10.1073/pnas.1906592116.
16. Johnson SC: Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing and Age-Related Disease. In Subcellular biochemistry Vol. 90 2018:49–97. Available: http://link.springer.com/10.1007/978-981-13-2835-0{\_}3.
17. Soultoukis GA, Partridge L: Dietary Protein, Metabolism, and Aging. Annual Review of Biochemistry 2016, 85:5–3410.1146/annurev-biochem-060815-014422Available: http://www.annualreviews.org/doi/10.1146/annurev-biochem-060815-014422.
18. Payne BAI, Chinnery PF: Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847:1347–135310.1016/j.bbabio.2015.05.022Available: http://dx.doi.org/10.1016/j.bbabio.2015.05.022.
19. Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A, Shields S, Tejada-Martinez D, Thornton D, Fraifeld VE, Bishop CL, Magalhães JP de: A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biology 2020, 21:9110.1186/s13059-020-01990-9Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-01990-9.
20. Ren R, Ocampo A, Liu G-H, Izpisua Belmonte JC: Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metabolism 2017, 26:460–47410.1016/j.cmet.2017.07.019Available: http://dx.doi.org/10.1016/j.cmet.2017.07.019 https://linkinghub.elsevier.com/retrieve/pii/S1550413117304849.
21. Franceschi C, Campisi J: Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2014, 69:S4–S910.1093/gerona/glu057Available: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glu057.
22. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R: A C. elegans mutant that lives twice as long as wild type. Nature 1993, 366:461–46410.1038/366461a0Available: http://www.nature.com/articles/366461a0.
23. Kenyon CJ: The genetics of ageing. Nature 2010, 464:504–51210.1038/nature08980Available: http://www.ncbi.nlm.nih.gov/pubmed/20336132.
24. Singh PP, Demmitt BA, Nath RD, Brunet A: The Genetics of Aging: A Vertebrate Perspective. Cell 2019, 177:200–22010.1016/j.cell.2019.02.038Available: https://doi.org/10.1016/j.cell.2019.02.038.
25. Broer L, Buchman AS, Deelen J, Evans DS, Faul JD, Lunetta KL, Sebastiani P, Smith JA, Smith AV, Tanaka T, Yu L, Arnold AM, Aspelund T, Benjamin EJ, De Jager PL, Eirkisdottir G, Evans DA, Garcia ME, Hofman A, Kaplan RC, Kardia SLR, Kiel DP, Oostra BA, Orwoll ES, Parimi N, Psaty BM, Rivadeneira F, Rotter JI, Seshadri S, Singleton A, et al.: GWAS of Longevity in CHARGE Consortium Confirms APOE and FOXO3 Candidacy. The Journals of Gerontology: Series A 2015, 70:110–11810.1093/gerona/glu166Available: https://academic.oup.com/biomedgerontology/article/70/1/110/2947666.
26. Zenin A, Tsepilov Y, Sharapov S, Getmantsev E, Menshikov LI, Fedichev PO, Aulchenko Y: Identification of 12 genetic loci associated with human healthspan. Communications Biology 2019, 2:4110.1038/s42003-019-0290-0Available: http://dx.doi.org/10.1038/s42003-019-0290-0 http://www.nature.com/articles/s42003-019-0290-0.
27. Melzer D, Pilling LC, Ferrucci L: The genetics of human ageing. Nature Reviews Genetics 2019, 10.1038/s41576-019-0183-6Available: http://dx.doi.org/10.1038/s41576-019-0183-6.
28. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, Kathiresan S, Kenny EE, Lindgren CM, MacArthur DG, North KN, Plon SE, Rehm HL, Risch N, Rotimi CN, Shendure J, Soranzo N, McCarthy MI: A brief history of human disease genetics. Nature 2020, 577:179–18910.1038/s41586-019-1879-7.
29. Shindyapina AV, Zenin AA, Tarkhov AE, Santesmasses D, Fedichev PO, Gladyshev VN: Germline burden of rare damaging variants negatively affects human healthspan and lifespan. eLife 2020, 9:1–1810.7554/eLife.53449Available: https://elifesciences.org/articles/53449.
30. Booth LN, Brunet A: The Aging Epigenome. Molecular Cell 2016, 62:728–74410.1016/j.molcel.2016.05.013Available: http://dx.doi.org/10.1016/j.molcel.2016.05.013.
31. Sinclair DA, Oberdoerffer P: The ageing epigenome: Damaged beyond repair? Ageing Research Reviews 2009, 8:189–19810.1016/j.arr.2009.04.004.
32. Hayano M, Yang J-H, Bonkowski MS, Amorim JA, Ross JM, Coppotelli G, Griffin P, Chew YC, Guo W, Yang X, Vera DL, Salfati EL, Das A, Thakur S, Kane AE, Mitchell SJ, Mohri Y, Nishimura EK, Schaevitz L, Garg N, Balta A-M, Rego MA, Gregory-Ksander M, Jakobs TC, Zhong L, Wakimoto H, Mostoslavsky R, Wagers AJ, Tsubota K, Bonasera SJ, et al.: DNA Break-Induced Epigenetic Drift as a Cause of Mammalian Aging. bioRxiv 2019, 10.1101/808659Available: https://doi.org/10.1101/808659.
33. Kane AE, Sinclair DA: Epigenetic changes during aging and their reprogramming potential. Critical Reviews in Biochemistry and Molecular Biology 2019, 54:61–8310.1080/10409238.2019.1570075Available: https://doi.org/10.1080/10409238.2019.1570075.
34. Bird A: Perceptions of epigenetics. Nature 2007, 447:396–810.1038/nature05913Available: http://www.ncbi.nlm.nih.gov/pubmed/17522671.
35. Waddington CH: The epigenotype. 1942. International journal of epidemiology 2012, 41:10–310.1093/ije/dyr184Available: http://www.ncbi.nlm.nih.gov/pubmed/22186258.
36. Russo V, Martienssen R, Riggs AD: Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press; 1996 Available: https://cshmonographs.org/index.php/monographs/issue/view/087969490.32.
37. Tabansky I, Stern JNH, Pfaff DW: Implications of Epigenetic Variability within a Cell Population for “Cell Type” Classification. Frontiers in Behavioral Neuroscience 2015, 9:1–1110.3389/fnbeh.2015.00342Available: http://journal.frontiersin.org/Article/10.3389/fnbeh.2015.00342/abstract.
38. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S: An estimation of the number of cells in the human body. Annals of human biology 2013, 40:463–7110.3109/03014460.2013.807878Available: http://www.ncbi.nlm.nih.gov/pubmed/23829164.
39. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, et al.: The Human Cell Atlas. eLife 2017, 6:1–3010.7554/eLife.27041Available: https://elifesciences.org/articles/27041.
40. CellSystemsVoices: What Is Your Conceptual Definition of “Cell Type” in the Context of a Mature Organism? Cell Systems 2017, 4:255–25910.1016/j.cels.2017.03.006Available: https://linkinghub.elsevier.com/retrieve/pii/S2405471217300911.
41. CellOntology: Cell Ontology. 2017, 10.5281/zenodo.168254Available: http://obofoundry.org/ontology/cl.html.Accessed 5 April 2017.
42. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming G, Song H: Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature neuroscience 2014, 17:215–2210.1038/nn.3607Available: http://www.ncbi.nlm.nih.gov/pubmed/24362762.
43. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462:315–2210.1038/nature08514Available: http://www.ncbi.nlm.nih.gov/pubmed/19829295.
44. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Rajagopal N, Nery JR, Urich MA, Chen H, Lin S, Lin Y, Jung I, Schmitt AD, Selvaraj S, Ren B, Sejnowski TJ, Wang W, Ecker JR: Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 2015, 523:212–610.1038/nature14465Available: http://www.ncbi.nlm.nih.gov/pubmed/26030523.
45. Penn NW, Suwalski R, O’Riley C, Bojanowski K, Yura R: The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochemical Journal 1972, 126:781–79010.1042/bj1260781Available: https://portlandpress.com/biochemj/article/126/4/781/6593/The-presence-of-5hydroxymethylcytosine-in-animal.
46. Kriaucionis S, Heintz N: The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science 2009, 324:929–93010.1126/science.1169786Available: https://www.sciencemag.org/lookup/doi/10.1126/science.1169786.
47. Pfeifer GP, Kadam S, Jin S-G: 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics & chromatin 2013, 6:1010.1186/1756-8935-6-10Available: http://www.ncbi.nlm.nih.gov/pubmed/23634848.
48. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 2011, 333:1300–130310.1126/science.1210597Available: https://www.sciencemag.org/lookup/doi/10.1126/science.1210597.
49. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang G, Hon LS, Fang G, Swenberg Ja, Xiao AZ: DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 2016, 532:329–3310.1038/nature17640Available: http://www.ncbi.nlm.nih.gov/pubmed/27027282.
50. Xie Q, Wu TP, Gimple RC, Li Z, Prager BC, Wu Q, Yu Y, Wang P, Wang Y, Gorkin DU, Zhang C, Dowiak AV, Lin K, Zeng C, Sui Y, Kim LJY, Miller TE, Jiang L, Lee CH, Huang Z, Fang X, Zhai K, Mack SC, Sander M, Bao S, Kerstetter-Fogle AE, Sloan AE, Xiao AZ, Rich JN: N-methyladenine DNA Modification in Glioblastoma. Cell 2018, 175:1228–1243.e2010.1016/j.cell.2018.10.006Available: https://linkinghub.elsevier.com/retrieve/pii/S009286741831314X.
51. Losick JDWTABSPBAGMLR: Molecular Biology of the Gene. 7th ed. Pearson; 2014.
52. Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Research 2011, 21:381–39510.1038/cr.2011.22Available: http://www.ncbi.nlm.nih.gov/pubmed/21321607.
53. Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403:41–4510.1038/47412Available: http://www.nature.com/articles/47412.
54. Schreiber SL, Bernstein BE: Signaling Network Model of Chromatin. Cell 2002, 111:771–77810.1016/S0092-8674(02)01196-0Available: https://linkinghub.elsevier.com/retrieve/pii/S0092867402011960.
55. Voigt P, LeRoy G, Drury WJ, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D: Asymmetrically modified nucleosomes. Cell 2012, 151:181–9310.1016/j.cell.2012.09.002Available: http://www.ncbi.nlm.nih.gov/pubmed/23021224.
56. Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, Kawli T, Davis CA, Dobin A, Kaul R, Halow J, Van Nostrand EL, Freese P, Gorkin DU, Shen Y, He Y, Mackiewicz M, Pauli-Behn F, Williams BA, Mortazavi A, Keller CA, Zhang X-O, Elhajjajy SI, Huey J, Dickel DE, Snetkova V, Wei X, Wang X, Rivera-Mulia JC, Rozowsky J, et al.: Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2020, 583:699–71010.1038/s41586-020-2493-4Available: http://www.nature.com/articles/s41586-020-2493-4.
57. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes Ja, Noble WS: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nature methods 2012, 9:473–610.1038/nmeth.1937Available: http://www.ncbi.nlm.nih.gov/pubmed/22426492.
58. Carrillo-de-Santa-Pau E, Juan D, Pancaldi V, Were F, Martin-Subero I, Rico D, Valencia A: Automatic identification of informative regions with epigenomic changes associated to hematopoiesis. Nucleic Acids Research 2017, 45:9244–925910.1093/nar/gkx618Available: https://academic.oup.com/nar/article/45/16/9244/3976483.
59. Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande W, Chadwick BP, Chan SWL, Cross GAM, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, et al.: A unified phylogeny-based nomenclature for histone variants. Epigenetics & Chromatin 2012, 5:710.1186/1756-8935-5-7Available: http://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/1756-8935-5-7.
60. Weber CM, Henikoff S: Histone variants: dynamic punctuation in transcription. Genes & development 2014, 28:672–8210.1101/gad.238873.114Available: http://www.ncbi.nlm.nih.gov/pubmed/24696452.
61. Kaikkonen MU, Lam MTY, Glass CK: Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovascular research 2011, 90:430–4010.1093/cvr/cvr097Available: http://www.ncbi.nlm.nih.gov/pubmed/21558279.
62. Cerase A, Pintacuda G, Tattermusch A, Avner P: Xist localization and function: new insights from multiple levels. Genome Biology 2015, 16:16610.1186/s13059-015-0733-yAvailable: http://genomebiology.com/2015/16/1/166.
63. Jenuwein T: Translating the Histone Code. Science 2001, 293:1074–108010.1126/science.1063127Available: http://www.ncbi.nlm.nih.gov/pubmed/20653993.
64. Smith RWA, Monroe C, Bolnick DA: Detection of Cytosine methylation in ancient DNA from five native american populations using bisulfite sequencing. PloS one 2015, 10:e012534410.1371/journal.pone.0125344Available: http://www.ncbi.nlm.nih.gov/pubmed/26016479.
65. Pedersen JS, Valen E, Velazquez AMV, Parker BJ, Rasmussen M, Lindgreen S, Lilje B, Tobin DJ, Kelly TK, Vang S, Andersson R, Jones PA, Hoover CA, Tikhonov A, Prokhortchouk E, Rubin EM, Sandelin A, Gilbert MTP, Krogh A, Willerslev E, Orlando L: Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Research 2014, 24:454–46610.1101/gr.163592.113Available: http://genome.cshlp.org/cgi/doi/10.1101/gr.163592.113.
66. Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S: Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic acids research 2010, 38:e8710.1093/nar/gkp1163Available: http://www.ncbi.nlm.nih.gov/pubmed/20028723.
67. Bauden M, Kristl T, Andersson R, Marko-Varga G, Ansari D: Characterization of histone-related chemical modifications in formalin-fixed paraffin-embedded and fresh-frozen human pancreatic cancer xenografts using LC-MS/MS. Laboratory Investigation 2017, 97:279–28810.1038/labinvest.2016.134Available: http://www.nature.com/doifinder/10.1038/labinvest.2016.134.
68. Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H: The role of DNA methylation in setting up chromatin structure during development. Nature Genetics 2003, 34:187–19210.1038/ng1158Available: http://www.nature.com/articles/ng1158.
69. Estève P-O, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, Carey MF, Pradhan S: Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes & development 2006, 20:3089–10310.1101/gad.1463706Available: http://www.ncbi.nlm.nih.gov/pubmed/17085482.
70. Rose NR, Klose RJ: Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2014, 1839:1362–137210.1016/j.bbagrm.2014.02.007Available: http://dx.doi.org/10.1016/j.bbagrm.2014.02.007.
71. Luo Y, Lu X, Xie H: Dynamic Alu Methylation during Normal Development, Aging, and Tumorigenesis. BioMed Research International 2014, 2014:1–1210.1155/2014/784706Available: http://www.hindawi.com/journals/bmri/2014/784706/.
72. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860–92110.1038/35057062Available: http://www.ncbi.nlm.nih.gov/pubmed/11237011.
73. Duncan BK, Miller JH: Mutagenic deamination of cytosine residues in DNA. Nature 1980, 287:560–1Available: http://www.ncbi.nlm.nih.gov/pubmed/6999365.
74. Zhou Y, He F, Pu W, Gu X, Wang J, Su Z: The Impact of DNA Methylation Dynamics on the Mutation Rate During Human Germline Development. G3: Genes|Genomes|Genetics 2020, 10:3337–334610.1534/g3.120.401511Available: http://g3journal.org/lookup/doi/10.1534/g3.120.401511.
75. Guo Y, Jamison DC: The distribution of SNPs in human gene regulatory regions. BMC Genomics 2005, 6:14010.1186/1471-2164-6-140Available: https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-6-140.
76. Wu H, Caffo B, Jaffee HA, Irizarry RA, Feinberg AP: Redefining CpG islands using hidden Markov models. Biostatistics 2010, 11:499–51410.1093/biostatistics/kxq005Available: https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxq005.
77. Gardiner-Garden M, Frommer M: CpG Islands in vertebrate genomes. Journal of Molecular Biology 1987, 196:261–28210.1016/0022-2836(87)90689-9Available: https://linkinghub.elsevier.com/retrieve/pii/0022283687906899.
78. Saxonov S, Berg P, Brutlag DL: A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences 2006, 103:1412–141710.1073/pnas.0510310103Available: http://www.pnas.org/cgi/doi/10.1073/pnas.0510310103.
79. Bell JSK, Vertino PM: Orphan CpG islands define a novel class of highly active enhancers. Epigenetics 2017, 12:449–46410.1080/15592294.2017.1297910Available: http://www.ncbi.nlm.nih.gov/pubmed/28448736.
80. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP: Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS genetics 2010, 6:e100113410.1371/journal.pgen.1001134Available: http://www.ncbi.nlm.nih.gov/pubmed/20885785.
81. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Hirst M, Wang T, Costello JF: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466:253–710.1038/nature09165Available: http://www.ncbi.nlm.nih.gov/pubmed/20613842.
82. Ehrlich M, Gama-Sosa MA, Huang L-H, Midgett RM, Kuo KC, McCune RA, Gehrke C: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Research 1982, 10:2709–272110.1093/nar/10.8.2709Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/10.8.2709.
83. Bird A: DNA methylation patterns and epigenetic memory. Genes & development 2002, 16:6–2110.1101/gad.947102Available: http://www.ncbi.nlm.nih.gov/pubmed/11782440.
84. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, Nimwegen E van, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schübeler D: DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011, 480:490–510.1038/nature10716Available: http://www.ncbi.nlm.nih.gov/pubmed/22170606.
85. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash J, Sabunciyan S, Feinberg AP: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature genetics 2009, 41:178–18610.1038/ng.298Available: http://www.ncbi.nlm.nih.gov/pubmed/19151715.
86. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A: Charting a dynamic DNA methylation landscape of the human genome. Nature 2013, 500:477–8110.1038/nature12433Available: http://www.ncbi.nlm.nih.gov/pubmed/23925113.
87. Baubec T, Schübeler D: Genomic patterns and context specific interpretation of DNA methylation. Current Opinion in Genetics & Development 2014, 25:85–9210.1016/j.gde.2013.11.015Available: http://www.ncbi.nlm.nih.gov/pubmed/24614011.
88. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J: Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science (New York, N.Y.) 2017, 356:eaaj223910.1126/science.aaj2239Available: http://www.ncbi.nlm.nih.gov/pubmed/28473536.
89. Zuo Z, Roy B, Chang YK, Granas D, Stormo GD: Measuring quantitative effects of methylation on transcription factor–DNA binding affinity. Science Advances 2017, 3:eaao179910.1126/sciadv.aao1799Available: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aao1799.
90. Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones Pa: Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Research 2012, 22:2497–250610.1101/gr.143008.112Available: http://www.ncbi.nlm.nih.gov/pubmed/22960375.
91. Huff JT, Zilberman D: Dnmt1-Independent CG Methylation Contributes to Nucleosome Positioning in Diverse Eukaryotes. Cell 2014, 156:1286–129710.1016/j.cell.2014.01.029Available: http://www.ncbi.nlm.nih.gov/pubmed/24630728.
92. Raiber E, Portella G, Martínez Cuesta S, Hardisty R, Murat P, Li Z, Iurlaro M, Dean W, Spindel J, Beraldi D, Liu Z, Dawson MA, Reik W, Balasubramanian S: 5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells. Nature Chemistry 2018, 10:1258–126610.1038/s41557-018-0149-xAvailable: http://www.nature.com/articles/s41557-018-0149-x.
93. Lyko F: The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nature Reviews Genetics 2017, 19:81–9210.1038/nrg.2017.80Available: http://www.nature.com/doifinder/10.1038/nrg.2017.80.
94. Vertino PM, Sekowski JA, Coll JM, Applegren N, Han S, Hickey RJ, Malkas LH: DNMT1 is a component of a multiprotein DNA replication complex. Cell cycle (Georgetown, Tex.) 2002, 1:416–2310.4161/cc.1.6.270Available: http://www.ncbi.nlm.nih.gov/pubmed/12548018.
95. Bostick M, Kim JK, Esteve P-O, Clark A, Pradhan S, Jacobsen SE: UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells. Science 2007, 317:1760–176410.1126/science.1147939Available: https://www.sciencemag.org/lookup/doi/10.1126/science.1147939.
96. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007, 449:248–25110.1038/nature06146Available: http://www.nature.com/articles/nature06146.
97. Kaiser S, Jurkowski TP, Kellner S, Schneider D, Jeltsch A, Helm M: The RNA methyltransferase Dnmt2 methylates DNA in the structural context of a tRNA. RNA Biology 2017, 14:1241–125110.1080/15476286.2016.1236170Available: https://www.tandfonline.com/doi/full/10.1080/15476286.2016.1236170.
98. Tahiliani M, Koh KP, Shen Y, Pastor Wa, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009, 324:930–93510.1126/science.1170116Available: http://www.sciencemag.org/cgi/doi/10.1126/science.1170116.
99. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L: Mutational landscape and significance across 12 major cancer types. Nature 2013, 502:333–33910.1038/nature12634.
100. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010, 468:839–84310.1038/nature09586Available: http://www.nature.com/articles/nature09586.
101. Wu X, Zhang Y: TET-mediated active DNA demethylation: mechanism, function and beyond. Nature Reviews Genetics 2017, 18:517–53410.1038/nrg.2017.33Available: http://www.nature.com/doifinder/10.1038/nrg.2017.33.
102. Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D: Identification of genetic elements that autonomously determine DNA methylation states. Nature genetics 2011, 43:1091–710.1038/ng.946Available: http://www.ncbi.nlm.nih.gov/pubmed/21964573.
103. Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE, Kahn RS, Ophoff RA: The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PloS one 2009, 4:e676710.1371/journal.pone.0006767Available: http://www.ncbi.nlm.nih.gov/pubmed/19774229.
104. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty VV, Schupf N, Vilain E, Morris M, Haghighi F, Tycko B: Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature genetics 2008, 40:904–810.1038/ng.174Available: http://www.ncbi.nlm.nih.gov/pubmed/18568024.
105. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, Plomin R, Mill J: Allelic skewing of DNA methylation is widespread across the genome. American journal of human genetics 2010, 86:196–21210.1016/j.ajhg.2010.01.014Available: http://www.ncbi.nlm.nih.gov/pubmed/20159110.
106. Shoemaker R, Deng J, Wang W, Zhang K: Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome research 2010, 20:883–910.1101/gr.104695.109Available: http://www.ncbi.nlm.nih.gov/pubmed/20418490.
107. Bell CG, Gao F, Yuan W, Roos L, Acton RJ, Xia Y, Bell J, Ward K, Mangino M, Hysi PG, Wang J, Spector TD: Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci. Nature Communications 2018, 9:810.1038/s41467-017-01586-1Available: http://www.nature.com/articles/s41467-017-01586-1.
108. Martin-Trujillo A, Vidal E, Monteagudo-Sánchez A, Sanchez-Delgado M, Moran S, Hernandez Mora JR, Heyn H, Guitart M, Esteller M, Monk D: Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors. Nature Communications 2017, 8:46710.1038/s41467-017-00639-9Available: http://www.ncbi.nlm.nih.gov/pubmed/28883545.
109. Ciernia AV, LaSalle J: The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nature Reviews Neuroscience 2016, 17:411–42310.1038/nrn.2016.41Available: http://dx.doi.org/10.1038/nrn.2016.41.
110. Ushijima T, Watanabe N, Shimizu K, Miyamoto K, Sugimura T, Kaneda A: Decreased fidelity in replicating CpG methylation patterns in cancer cells. Cancer research 2005, 65:11–7Available: http://www.ncbi.nlm.nih.gov/pubmed/15665274.
111. Kunkel TA: DNA Replication Fidelity. Journal of Biological Chemistry 2004, 279:16895–1689810.1074/jbc.R400006200Available: http://www.jbc.org/lookup/doi/10.1074/jbc.R400006200.
112. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007, 450:908–91210.1038/nature06397Available: http://www.nature.com/articles/nature06397.
113. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 2008, 455:818–82110.1038/nature07249Available: http://www.nature.com/articles/nature07249.
114. Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, Koseki H, Wong J: UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nature Communications 2013, 4:156310.1038/ncomms2562Available: http://www.ncbi.nlm.nih.gov/pubmed/23463006.
115. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KMA, Manley NC, Vary JC, Morgan T, Hansen RS, Stoger R: Hairpin-bisulfite PCR: Assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proceedings of the National Academy of Sciences 2004, 101:204–20910.1073/pnas.2536758100Available: http://www.pnas.org/cgi/doi/10.1073/pnas.2536758100.
116. Pfeifer GP, Steigerwald SD, Hansen RS, Gartler SM, Riggs AD: Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proceedings of the National Academy of Sciences 1990, 87:8252–825610.1073/pnas.87.21.8252Available: http://www.pnas.org/cgi/doi/10.1073/pnas.87.21.8252.
117. Riggs AD, Xiong Z: Methylation and epigenetic fidelity. Proceedings of the National Academy of Sciences 2004, 101:4–510.1073/pnas.0307781100Available: http://www.ncbi.nlm.nih.gov/pubmed/14695893.
118. Jenkinson G, Pujadas E, Goutsias J, Feinberg AP: Potential energy landscapes identify the information-theoretic nature of the epigenome. Nature genetics 2017, 49:719–72910.1038/ng.3811Available: http://www.ncbi.nlm.nih.gov/pubmed/28346445.
119. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu Y-Z, Plass C, Esteller M: From The Cover: Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences 2005, 102:10604–1060910.1073/pnas.0500398102Available: http://www.ncbi.nlm.nih.gov/pubmed/16009939.
120. Slieker RC, Iterson M van, Luijk R, Beekman M, Zhernakova DV, Moed MH, Mei H, Galen M van, Deelen P, Bonder MJ, Zhernakova A, Uitterlinden AG, Tigchelaar EF, Stehouwer CDA, Schalkwijk CG, Kallen CJH van der, Hofman A, Heemst D van, Geus EJ de, Dongen J van, Deelen J, Berg LH van den, Meurs J van, Jansen R, ’t Hoen PAC, Franke L, Wijmenga C, Veldink JH, Swertz MA, Greevenbroek MMJ van, et al.: Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome biology 2016, 17:19110.1186/s13059-016-1053-6Available: http://www.ncbi.nlm.nih.gov/pubmed/27654999.
121. Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, Andrews S, Zhang Q, Wakelam MJ, Beyer A, Reik W, Partridge L: Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biology 2017, 18:5610.1186/s13059-017-1187-1Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1187-1.
122. Zhao L, Sun M, Li Z, Bai X, Yu M, Wang M, Liang L, Shao X, Arnovitz S, Wang Q, He C, Lu X, Chen J, Xie H: The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Research 2014, 24:1296–130710.1101/gr.163147.113Available: http://genome.cshlp.org/lookup/doi/10.1101/gr.163147.113.
123. Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, Laird PW, Berman BP: DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nature Genetics 2018, 50:591–60210.1038/s41588-018-0073-4Available: http://dx.doi.org/10.1038/s41588-018-0073-4.
124. Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T: A genomic scanning method for higher organisms using restriction sites as landmarks. Proceedings of the National Academy of Sciences of the United States of America 1991, 88:9523–710.1073/pnas.88.21.9523Available: http://www.ncbi.nlm.nih.gov/pubmed/1946366.
125. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics 2005, 37:853–86210.1038/ng1598Available: http://www.ncbi.nlm.nih.gov/pubmed/16007088.
126. Harrison A, Parle-McDermott A: DNA Methylation: A Timeline of Methods and Applications. Frontiers in Genetics 2011, 2:632–64910.3389/fgene.2011.00074Available: http://journal.frontiersin.org/article/10.3389/fgene.2011.00074/abstract.
127. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Gräf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Bäckdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJP, Durbin R, Tavaré S, Beck S: A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnology 2008, 26:779–78510.1038/nbt1414Available: http://www.nature.com/articles/nbt1414.
128. Lienhard M, Grimm C, Morkel M, Herwig R, Chavez L: MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 2014, 30:284–28610.1093/bioinformatics/btt650Available: http://www.ncbi.nlm.nih.gov/pubmed/24227674.
129. Serre D, Lee BH, Ting AH: MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Research 2010, 38:391–39910.1093/nar/gkp992Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkp992.
130. Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, Xu D, Lin H-K, Gong Z: Circular RNAs in cancer: novel insights into origins, properties, functions and implications. American journal of cancer research 2015, 5:472–80Available: http://www.ncbi.nlm.nih.gov/pubmed/25973291.
131. Bock C, Tomazou EM, Brinkman AB, Müller F, Simmer F, Gu H, Jäger N, Gnirke A, Stunnenberg HG, Meissner A: Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature Biotechnology 2010, 28:1106–111410.1038/nbt.1681Available: http://www.ncbi.nlm.nih.gov/pubmed/20852634.
132. Hayatsu H, Wataya Y, Kai K, Iida S: Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 1970, 9:2858–286510.1021/bi00816a016Available: http://pubs.acs.org/doi/abs/10.1021/bi00816a016.
133. Adamowicz M, Maratou K, Aitman TJ: Multiplexed DNA Methylation Analysis of Target Regions Using Microfluidics (Fluidigm). In Methods in molecular biology (clifton, n.j.) Vol. 1708 2018:349–363. Available: http://www.ncbi.nlm.nih.gov/pubmed/29224153.
134. Skvortsova K, Zotenko E, Luu P-L, Gould CM, Nair SS, Clark SJ, Stirzaker C: Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics & Chromatin 2017, 10:1610.1186/s13072-017-0123-7Available: http://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-017-0123-7.
135. Williams L, Bei Y, Church HE, Dai N, Dimalanta ET, Ettwiller LM, Evans TC, Langhorst BW, Borgaro JG, Guan S, Marks K, Menin JF, Nichols NM, Chaithanya Ponnaluri VK, Saleh L, Samaranayake M, Sexton BS, Sun Z, Tamanaha E, Vaisvila R, Yigit E, Davis TB: Enzymatic Methyl-seq: The Next Generation of Methylome Analysis BISULFITE SEQUENCING ALTERNATIVE METHODS FOR DETECTING 5mC AND 5hmC. 2019, :2–5Available: https://international.neb.com/tools-and-resources/feature-articles/enzymatic-methyl-seq-the-next-generation-of-methylome-analysis.
136. Rhoads A, Au KF: PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics 2015, 13:278–28910.1016/j.gpb.2015.08.002Available: https://linkinghub.elsevier.com/retrieve/pii/S1672022915001345.
137. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W: Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods 2017, 14:407–41010.1038/nmeth.4184Available: http://www.nature.com/articles/nmeth.4184.
138. Wilson VL, Jones PA: DNA methylation decreases in aging but not in immortal cells. Science (New York, N.Y.) 1983, 220:1055–7Available: http://www.ncbi.nlm.nih.gov/pubmed/6844925.
139. Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301:89–9210.1038/301089a0Available: http://www.nature.com/articles/301089a0.
140. Romanov GA, Vanyushin BF: Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochimica et biophysica acta 1981, 653:204–18Available: http://www.ncbi.nlm.nih.gov/pubmed/7225396.
141. Berdyshev GD, Korotaev GK, Boiarskikh GV, Vaniushin BF: Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning. Biokhimiia (Moscow, Russia) 1967, 32:988–93Available: http://www.ncbi.nlm.nih.gov/pubmed/5628601.
142. Wilson VL, Smith RA, Ma S, Cutler RG: Genomic 5-methyldeoxycytidine decreases with age. The Journal of biological chemistry 1987, 262:9948–51Available: http://www.ncbi.nlm.nih.gov/pubmed/3611071.
143. Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD: Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biology 2017, 18:5810.1186/s13059-017-1185-3Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1185-3.
144. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R: Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic acids research 2005, 33:5868–7710.1093/nar/gki901Available: http://www.ncbi.nlm.nih.gov/pubmed/16224102.
145. Feinberg AP, Tycko B: The history of cancer epigenetics. Nature Reviews Cancer 2004, 4:143–15310.1038/nrc1279Available: http://www.nature.com/articles/nrc1279.
146. Knudson AG: Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America 1971, 68:820–310.1073/pnas.68.4.820Available: http://www.ncbi.nlm.nih.gov/pubmed/5279523.
147. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. Journal of the National Cancer Institute 2000, 92:564–910.1093/jnci/92.7.564Available: http://www.ncbi.nlm.nih.gov/pubmed/10749912.
148. Feinberg AP: The Key Role of Epigenetics in Human Disease Prevention and Mitigation. New England Journal of Medicine 2018, 378:1323–133410.1056/NEJMra1402513Available: http://www.ncbi.nlm.nih.gov/pubmed/29617578.
149. Bibikova M: High-throughput DNA methylation profiling using universal bead arrays. Genome Research 2006, 16:383–39310.1101/gr.4410706Available: http://www.genome.org/cgi/doi/10.1101/gr.4410706.
150. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S: DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genetics 2006, 38:1378–138510.1038/ng1909Available: http://www.nature.com/doifinder/10.1038/ng1909.
151. Bjornsson HT: Intra-individual Change Over Time in DNA Methylation With Familial Clustering. JAMA 2008, 299:287710.1001/jama.299.24.2877Available: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.299.24.2877.
152. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh R-F, Wiencke JK, Kelsey KT: Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context. PLoS Genetics 2009, 5:e100060210.1371/journal.pgen.1000602Available: https://dx.plos.org/10.1371/journal.pgen.1000602.
153. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD: Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Research 2010, 20:434–43910.1101/gr.103101.109Available: http://genome.cshlp.org/cgi/doi/10.1101/gr.103101.109.
154. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, Gunderson KL: Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 2009, 1:177–20010.2217/epi.09.14Available: https://www.futuremedicine.com/doi/10.2217/epi.09.14.
155. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome research 2010, 20:440–610.1101/gr.103606.109Available: http://www.ncbi.nlm.nih.gov/pubmed/20219944.
156. Jung M, Pfeifer GP: Aging and DNA methylation. BMC Biology 2015, 13:710.1186/s12915-015-0118-4Available: http://www.biomedcentral.com/1741-7007/13/7.
157. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage Da: Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics 2010, 3:3310.1186/1755-8794-3-33Available: http://bmcmedgenomics.biomedcentral.com/articles/10.1186/1755-8794-3-33.
158. Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S, Vilain E: Epigenetic Predictor of Age. PLoS ONE 2011, 6:e1482110.1371/journal.pone.0014821Available: https://dx.plos.org/10.1371/journal.pone.0014821.
159. Koch CM, Wagner W: Epigenetic-aging-signature to determine age in different tissues. Aging 2011, 3:1018–2710.18632/aging.100395Available: http://www.ncbi.nlm.nih.gov/pubmed/22067257.
160. Bell JT, Tsai P-C, Yang T-P, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin S-Y, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, MuTHER Consortium, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P: Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS genetics 2012, 8:e100262910.1371/journal.pgen.1002629Available: http://www.ncbi.nlm.nih.gov/pubmed/22532803.
161. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M: Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences 2012, 109:10522–1052710.1073/pnas.1120658109Available: http://www.pnas.org/cgi/doi/10.1073/pnas.1120658109.
162. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan J-B, Shen R: High density DNA methylation array with single CpG site resolution. Genomics 2011, 98:288–9510.1016/j.ygeno.2011.07.007Available: http://www.ncbi.nlm.nih.gov/pubmed/21839163.
163. Affinito O, Scala G, Palumbo D, Florio E, Monticelli A, Miele G, Avvedimento VE, Usiello A, Chiariotti L, Cocozza S: Modeling DNA methylation by analyzing the individual configurations of single molecules. Epigenetics 2016, 11:881–88810.1080/15592294.2016.1246108Available: http://www.ncbi.nlm.nih.gov/pubmed/27748645.
164. Haerter JO, Lövkvist C, Dodd IB, Sneppen K: Collaboration between CpG sites is needed for stable somatic inheritance of DNA methylation states. Nucleic Acids Research 2014, 42:2235–224410.1093/nar/gkt1235Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3936770.
165. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr ARW, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A: CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 2010, 464:1082–610.1038/nature08924Available: http://www.ncbi.nlm.nih.gov/pubmed/20393567.
166. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, Rezzi S, Castellani G, Capri M, Salvioli S, Franceschi C: Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging cell 2012, 11:1132–410.1111/acel.12005Available: http://www.ncbi.nlm.nih.gov/pubmed/23061750.
167. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K: Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell 2013, 49:359–36710.1016/j.molcel.2012.10.016Available: http://www.ncbi.nlm.nih.gov/pubmed/23177740.
168. Horvath S: DNA methylation age of human tissues and cell types. Genome biology 2013, 14:R11510.1186/gb-2013-14-10-r115Available: http://www.ncbi.nlm.nih.gov/pubmed/24138928.
169. Friedman J, Hastie T, Tibshirani R: Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software 2010, 33:7–1010.18637/jss.v033.i01Available: http://www.jstatsoft.org/v33/i01/.
170. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H: Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Human Molecular Genetics 2014, 23:1186–120110.1093/hmg/ddt531Available: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddt531.
171. Bacalini MG, Boattini A, Gentilini D, Giampieri E, Pirazzini C, Giuliani C, Fontanesi E, Remondini D, Capri M, Del Rio A, Luiselli D, Vitale G, Mari D, Castellani G, Di Blasio AM, Salvioli S, Franceschi C, Garagnani P: A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data. Aging 2015, 7:97–10910.18632/aging.100718Available: http://www.aging-us.com/article/100718.
172. Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Falchi M, Suhre K: Association of DNA methylation with age, gender, and smoking in an Arab population. Clinical Epigenetics 2015, 7:610.1186/s13148-014-0040-6Available: http://www.ncbi.nlm.nih.gov/pubmed/25663950.
173. Benton MC, Sutherland HG, Macartney-Coxson D, Haupt LM, Lea RA, Griffiths LR: Methylome-wide association study of whole blood DNA in the Norfolk Island isolate identifies robust loci associated with age. Aging 2017, 9:753–76810.18632/aging.101187Available: http://www.aging-us.com/article/101187/text.
174. Johnson ND, Wiener HW, Smith AK, Nishitani S, Absher DM, Arnett DK, Aslibekyan S, Conneely KN: Non-linear patterns in age-related DNA methylation may reflect CD4 + T cell differentiation. Epigenetics 2017, 12:492–50310.1080/15592294.2017.1314419Available: http://www.ncbi.nlm.nih.gov/pubmed/28387568.
175. Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, Tylavsky FA, Conneely KN: Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics 2014, 15:14510.1186/1471-2164-15-145Available: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-145.
176. Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, Keil T, Lee YA, Grueters A, Krude H: An alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genetics 2012, 8:1–1210.1371/journal.pgen.1002543.
177. Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S, Daly MJ, Price AL, Pritchard JK, Sharp AJ, Erlich Y: Abundant contribution of short tandem repeats to gene expression variation in humans. Nature Genetics 2016, 48:22–2910.1038/ng.3461Available: http://dx.doi.org/10.1038/ng.3461.
178. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann W, Ho AD, Huber W, Trumpp A, Essers MAG, Steinmetz LM: Human haematopoietic stem cell lineage commitment is a continuous process. Nature Cell Biology 2017, 19:271–28110.1038/ncb3493Available: http://www.nature.com/articles/ncb3493.
179. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen Ha, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, et al.: Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine 2014, 371:2488–249810.1056/NEJMoa1408617Available: http://www.ncbi.nlm.nih.gov/pubmed/25426837.
180. Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley TE, Fisher DS, Blundell JR: The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 2020, 367:1449–145410.1126/science.aay9333Available: https://www.sciencemag.org/lookup/doi/10.1126/science.aay9333.
181. Kirschner K, Chandra T, Kiselev V, Flores-Santa Cruz D, Macaulay IC, Park HJ, Li J, Kent DG, Kumar R, Pask DC, Hamilton TL, Hemberg M, Reik W, Green AR: Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Reports 2017, 19:1503–151110.1016/j.celrep.2017.04.074Available: https://linkinghub.elsevier.com/retrieve/pii/S2211124717306034.
182. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, et al.: Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine 2014, 371:2488–249810.1056/NEJMoa1408617Available: http://www.nejm.org/doi/10.1056/NEJMoa1408617.
183. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel K-H, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W: Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome biology 2014, 15:R2410.1186/gb-2014-15-2-r24Available: http://www.ncbi.nlm.nih.gov/pubmed/24490752.
184. Johnson TE: Recent results: Biomarkers of aging. Experimental Gerontology 2006, 41:1243–124610.1016/j.exger.2006.09.006Available: https://linkinghub.elsevier.com/retrieve/pii/S0531556506002865.
185. Thompson MJ, VonHoldt B, Horvath S, Pellegrini M: An epigenetic aging clock for dogs and wolves. Aging 2017, 9:1055–106810.18632/aging.101211Available: http://www.ncbi.nlm.nih.gov/pubmed/28373601.
186. Stubbs TM, Bonder MJ, Stark A-K, Krueger F, Meyenn F von, Stegle O, Reik W: Multi-tissue DNA methylation age predictor in mouse. Genome Biology 2017, 18:6810.1186/s13059-017-1203-5Available: http://www.ncbi.nlm.nih.gov/pubmed/28399939.
187. Lowe R, Danson AF, Rakyan VK, Yildizoglu S, Saldmann F, Viltard M, Friedlander G, Faulkes CG: DNA methylation clocks as a predictor for ageing and age estimation in naked mole-rats , Heterocephalus glaber. 2020, 12:1–1310.18632/aging.102892.
188. Lowe R, Barton C, Jenkins CA, Ernst C, Forman O, Fernandez-Twinn DS, Bock C, Rossiter SJ, Faulkes CG, Ozanne SE, Walter L, Odom DT, Mellersh C, Rakyan VK: Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biology 2018, 19:2210.1186/s13059-018-1397-1Available: http://www.ncbi.nlm.nih.gov/pubmed/29452591.
189. Wang M, Lemos B: Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome research 2019, 29:325–33310.1101/gr.241745.118Available: http://www.ncbi.nlm.nih.gov/pubmed/30765617.
190. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, et al.: DNA methylation age of blood predicts all-cause mortality in later life. Genome biology 2015, 16:2510.1186/s13059-015-0584-6Available: http://www.ncbi.nlm.nih.gov/pubmed/25633388.
191. Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K: DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 2016, 15:149–15410.1111/acel.12421Available: http://doi.wiley.com/10.1111/acel.12421.
192. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai P-C, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, et al.: DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 2016, 8:1844–186510.18632/aging.101020Available: http://www.ncbi.nlm.nih.gov/pubmed/27690265.
193. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S: An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10:573–59110.18632/aging.101414Available: http://www.ncbi.nlm.nih.gov/pubmed/29676998.
194. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S: DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11:303–32710.18632/aging.101684Available: http://www.aging-us.com/article/101684/text.
195. Halloran AMO, Hever A, Ni C, Ake C, Horvath S: Association of 4 epigenetic clocks with measures of functional health, cognition, and all- cause mortality in The Irish Longitudinal Study on Ageing (TILDA). 2020, :1–3510.1101/2020.04.27.063164Available: https://www.biorxiv.org/content/10.1101/2020.04.27.063164v1.
196. Belsky DW, Caspi A, Arseneault L, Baccarelli A, Corcoran DL, Gao X, Hannon E, Harrington HL, Rasmussen LJH, Houts R, Huffman K, Kraus WE, Kwon D, Mill J, Pieper CF, Prinz JA, Poulton R, Schwartz J, Sugden K, Vokonas P, Williams BS, Moffitt TE: Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 2020, 9:1–5610.7554/eLife.54870Available: https://elifesciences.org/articles/54870.
197. Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, Leipold MD, Lin DTS, Kobor MS, Horvath S: Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 2019, :1–1210.1111/acel.13028.
198. Lu AT, Seeboth A, Tsai PC, Sun D, Quach A, Reiner AP, Kooperberg C, Ferrucci L, Hou L, Baccarelli AA, Li Y, Harris SE, Corley J, Taylor A, Deary IJ, Stewart JD, Whitsel EA, Assimes TL, Chen W, Li S, Mangino M, Bell JT, Wilson JG, Aviv A, Marioni RE, Raj K, Horvath S: DNA methylation-based estimator of telomere length. Aging 2019, 11:5895–592310.18632/aging.102173.
199. Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ: The Influence of Age on T Cell Generation and TCR Diversity. The Journal of Immunology 2005, 174:7446–745210.4049/jimmunol.174.11.7446Available: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.174.11.7446.
200. MARCUS R, BUTTERFIELD G, HOLLOWAY L, GILLILAND L, BAYLINK DJ, HINTZ RL, SHERMAN BM: Effects of Short Term Administration of Recombinant Human Growth Hormone to Elderly People*. The Journal of Clinical Endocrinology & Metabolism 1990, 70:519–52710.1210/jcem-70-2-519Available: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem-70-2-519.
201. Gensous N, Franceschi C, Santoro A, Milazzo M, Garagnani P, Bacalini MG: The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. International Journal of Molecular Sciences 2019, 20:202210.3390/ijms20082022Available: https://www.mdpi.com/1422-0067/20/8/2022.
202. Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-Borg HM, Adams PD, Ideker T: Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biology 2017, 18:5710.1186/s13059-017-1186-2Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1186-2.
203. Horvath S, Singh K, Raj K, Khairnar S, Sanghavi A, Shrivastava A, Zoller JA, Li CZ, Herenu CB, Canatelli-Mallat M, Lehmann M, Woods LCS, Martinez AG, Wang T, Chiavellini P, Levine AJ, Chen H, Goya RG, Katcher HL: Reversing age: dual species measurement of epigenetic age with a single clock. bioRxiv 2020, :2020.05.07.08291710.1101/2020.05.07.082917Available: https://www.biorxiv.org/content/10.1101/2020.05.07.082917v1.
204. Kulkarni AS, Gubbi S, Barzilai N: Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metabolism 2020, 32:15–3010.1016/j.cmet.2020.04.001Available: https://doi.org/10.1016/j.cmet.2020.04.001.
205. TAME trial website: 2020, Available: https://www.afar.org/tame-trial.
206. Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, Barzilai N, Kuchel GA: A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. GeroScience 2018, 40:419–43610.1007/s11357-018-0042-yAvailable: http://link.springer.com/10.1007/s11357-018-0042-y.
207. Harvey NC, Javaid K, Bishop N, Kennedy S, Papageorghiou AT, Fraser R, Gandhi SV, Schoenmakers I, Prentice A, Cooper C: MAVIDOS Maternal Vitamin D Osteoporosis Study: study protocol for a randomized controlled trial. The MAVIDOS Study Group. Trials 2012, 13:1310.1186/1745-6215-13-13Available: http://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-13-13.
208. Cooper C, Harvey NC, Bishop NJ, Kennedy S, Papageorghiou AT, Schoenmakers I, Fraser R, Gandhi SV, Carr A, D’Angelo S, Crozier SR, Moon RJ, Arden NK, Dennison EM, Godfrey KM, Inskip HM, Prentice A, Mughal MZ, Eastell R, Reid DM, Javaid MK: Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. The Lancet Diabetes & Endocrinology 2016, 4:393–40210.1016/S2213-8587(16)00044-9Available: http://dx.doi.org/10.1016/S2213-8587(16)00044-9.
209. Bell CG, Xia Y, Yuan W, Gao F, Ward K, Roos L, Mangino M, Hysi PG, Bell J, Wang J, Spector TD: Novel regional age-associated DNA methylation changes within human common disease-associated loci. Genome Biology 2016, 17:19310.1186/s13059-016-1051-8Available: http://www.ncbi.nlm.nih.gov/pubmed/27663977.
210. Moran S, Arribas C, Esteller M: Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 2016, 8:389–9910.2217/epi.15.114Available: http://www.ncbi.nlm.nih.gov/pubmed/26673039.
211. Gunderson KL: Decoding Randomly Ordered DNA Arrays. Genome Research 2004, 14:870–87710.1101/gr.2255804Available: http://www.genome.org/cgi/doi/10.1101/gr.2255804.
212. Michael KL, Taylor LC, Schultz SL, Walt DR: Randomly Ordered Addressable High-Density Optical Sensor Arrays. Analytical Chemistry 1998, 70:1242–124810.1021/ac971343rAvailable: https://pubs.acs.org/doi/10.1021/ac971343r.
213. Clark C, Palta P, Joyce CJ, Scott C, Grundberg E, Deloukas P, Palotie A, Coffey AJ: A Comparison of the Whole Genome Approach of MeDIP-Seq to the Targeted Approach of the Infinium HumanMethylation450 BeadChip for Methylome Profiling. PLoS ONE 2012, 7:e5023310.1371/journal.pone.0050233Available: https://dx.plos.org/10.1371/journal.pone.0050233.
214. Smith ML, Baggerly KA, Bengtsson H, Ritchie ME, Hansen KD: illuminaio: An open source IDAT parsing tool for Illumina microarrays. F1000Research 2013, 2:1–810.12688/f1000research.2-264.v1.
215. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F: Evaluation of the Infinium Methylation 450K technology. Epigenomics 2011, 3:771–78410.2217/epi.11.105Available: https://www.futuremedicine.com/doi/10.2217/epi.11.105.
216. Fortin J-P, Triche TJ, Hansen KD: Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 2016, :btw69110.1093/bioinformatics/btw691Available: http://biorxiv.org/lookup/doi/10.1101/065490.
217. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S: A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29:189–19610.1093/bioinformatics/bts680Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bts680.
218. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA: Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics 2010, 11:733–73910.1038/nrg2825Available: http://www.nature.com/articles/nrg2825.
219. Fortin J-P, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, Greenwood CMT, Hansen KD: Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biology 2014, 15:50310.1186/s13059-014-0503-2Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0503-2.
220. Ehrich M, Zoll S, Sur S, Boom D van den: A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic acids research 2007, 35:e2910.1093/nar/gkl1134Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl1134 http://www.ncbi.nlm.nih.gov/pubmed/17259213 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1865059.
221. Illumina: Infinium HD Assay Methylation Protocol Guide. Illumina; 2015 Available: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry{\_}documentation/infinium{\_}assays/infinium{\_}hd{\_}methylation/infinium-hd-methylation-guide-15019519-01.pdf.
222. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ: Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome biology 2016, 17:20810.1186/s13059-016-1066-1Available: http://www.ncbi.nlm.nih.gov/pubmed/27717381.
223. Zhou W, Laird PW, Shen H: Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Research 2016, 45:gkw96710.1093/nar/gkw967Available: http://www.ncbi.nlm.nih.gov/pubmed/27924034.
224. Birney E, Smith GD, Greally JM: Epigenome-wide Association Studies and the Interpretation of Disease -Omics. PLOS Genetics 2016, 12:e100610510.1371/journal.pgen.1006105Available: http://www.ncbi.nlm.nih.gov/pubmed/27336614.
225. Lappalainen T, Greally JM: Associating cellular epigenetic models with human phenotypes. Nature Reviews Genetics 2017, 18:441–45110.1038/nrg.2017.32Available: http://www.nature.com/doifinder/10.1038/nrg.2017.32.
226. Andrews SV, Ladd-Acosta C, Feinberg AP, Hansen KD, Fallin MD: “Gap hunting” to characterize clustered probe signals in Illumina methylation array data. Epigenetics & Chromatin 2016, 9:5610.1186/s13072-016-0107-zAvailable: http://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-016-0107-z.
227. Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, Beck S, Butcher LM: Methylome analysis using MeDIP-seq with low DNA concentrations. Nature Protocols 2012, 7:617–63610.1038/nprot.2012.012Available: http://www.nature.com/articles/nprot.2012.012.
228. Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, Lehrach H, Herwig R, Adjaye J: Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage. Genome Research 2010, 20:1441–145010.1101/gr.110114.110Available: http://genome.cshlp.org/cgi/doi/10.1101/gr.110114.110.
229. Andrews S: FastQC. 2010, Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
230. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078–207910.1093/bioinformatics/btp352Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352.
231. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841–84210.1093/bioinformatics/btq033Available: http://bedtools.readthedocs.io/en/latest/index.html.
232. Moayyeri A, Hammond CJ, Valdes AM, Spector TD: Cohort Profile: TwinsUK and Healthy Ageing Twin Study. International Journal of Epidemiology 2013, 42:76–8510.1093/ije/dyr207Available: http://www.ncbi.nlm.nih.gov/pubmed/22253318.
233. Korbie D, Lin E, Wall D, Nair SS, Stirzaker C, Clark SJ, Trau M: Multiplex bisulfite PCR resequencing of clinical FFPE DNA. Clinical Epigenetics 2015, 7:2810.1186/s13148-015-0067-3Available: https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-015-0067-3.
234. Tran H, Porter J, Sun M, Xie H, Zhang L: Objective and Comprehensive Evaluation of Bisulfite Short Read Mapping Tools. Advances in Bioinformatics 2014, 2014:1–1110.1155/2014/472045Available: http://www.hindawi.com/journals/abi/2014/472045/.
235. Böttcher R, Amberg R, Ruzius FP, Guryev V, Verhaegh WFJ, Beyerlein P, Zaag PJ van der: Using a priori knowledge to align sequencing reads to their exact genomic position. Nucleic Acids Research 2012, 40:e125–e12510.1093/nar/gks393Available: https://academic.oup.com/nar/article/40/16/e125/1026881.
236. Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27:1571–157210.1093/bioinformatics/btr167Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr167.
237. Li L-C, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford, England) 2002, 18:1427–31Available: http://www.ncbi.nlm.nih.gov/pubmed/12424112.
238. Staa TP van, Dennison EM, Leufkens HGM, Cooper C: Epidemiology of fractures in England and Wales. Bone 2001, 29:517–52210.1016/S8756-3282(01)00614-7Available: https://linkinghub.elsevier.com/retrieve/pii/S8756328201006147.
239. Streubel PN, Ricci WM, Wong A, Gardner MJ: Mortality After Distal Femur Fractures in Elderly Patients. Clinical Orthopaedics and Related Research 2011, 469:1188–119610.1007/s11999-010-1530-2Available: http://link.springer.com/10.1007/s11999-010-1530-2.
240. Thompson E, Greenspan S: National Osteoporosis Foundation Annual Report (2018). National Osteoporosis Foundation; 2018 Available: https://cdn.nof.org/wp-content/uploads/2018{\_}NOF{\_}Annual{\_}report{\_}FINAL.pdf.
241. Hernandez CJ, Beaupré GS, Carter DR: A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporosis International 2003, 14:843–84710.1007/s00198-003-1454-8.
242. Nguyen TV, Center JR, Eisman JA: Femoral Neck Bone Loss Predicts Fracture Risk Independent of Baseline BMD. Journal of Bone and Mineral Research 2005, 20:1195–120110.1359/JBMR.050215Available: http://doi.wiley.com/10.1359/JBMR.050215.
243. Finkelstein JS, Brockwell SE, Mehta V, Greendale GA, Sowers MR, Ettinger B, Lo JC, Johnston JM, Cauley JA, Danielson ME, Neer RM: Bone Mineral Density Changes during the Menopause Transition in a Multiethnic Cohort of Women. The Journal of Clinical Endocrinology & Metabolism 2008, 93:861–86810.1210/jc.2007-1876Available: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2007-1876.
244. Hui SL, Slemenda CW, Johnston CC: The contribution of bone loss to postmenopausal osteoporosis. Osteoporosis International 1990, 1:30–3410.1007/BF01880413.
245. Harvey N, Dennison E, Cooper C: Osteoporosis: A Lifecourse Approach. Journal of Bone and Mineral Research 2014, 29:1917–192510.1002/jbmr.2286Available: http://doi.wiley.com/10.1002/jbmr.2286.
246. Bikle DD: Vitamin D and Bone. Current Osteoporosis Reports 2012, 10:151–15910.1007/s11914-012-0098-zAvailable: http://link.springer.com/10.1007/s11914-012-0098-z.
247. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T: Vitamin D and intestinal calcium absorption. Molecular and Cellular Endocrinology 2011, 347:25–2910.1016/j.mce.2011.05.038Available: https://linkinghub.elsevier.com/retrieve/pii/S0303720711002930.
248. Fukumoto S: Phosphate metabolism and vitamin D. BoneKEy Reports 2014, 3:1–510.1038/bonekey.2013.231Available: http://dx.doi.org/10.1038/bonekey.2013.231.
249. Baird J, Kurshid MA, Kim M, Harvey N, Dennison E, Cooper C: Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporosis International 2011, 22:1323–133410.1007/s00198-010-1344-9.
250. Cooper C, Eriksson JG, Forsén T, Osmond C, Tuomilehto J, Barker DJP: Maternal height, childhood growth and risk of hip fracture in later life: A longitudinal study. Osteoporosis International 2001, 12:623–62910.1007/s001980170061.
251. Inskip HM, Godfrey KM, Robinson SM, Law CM, Jp D: Europe PMC Funders Group Cohort Profile : The Southampton Women ’ s Survey. International Journal of Epidemiology 2006, 35:42–4810.1093/ije/dyi202.
252. Harvey NC, Mahon PA, Robinson SM, Nisbet CE, Javaid MK, Crozier SR, Inskip HM, Godfrey KM, Arden NK, Dennison EM, Cooper C, Taylor P, Greenaway LJ, Hanson M, Barker DJP, Law CM: Different indices of fetal growth predict bone size and volumetric density at 4 years of age. Journal of Bone and Mineral Research 2010, 25:920–92710.1359/jbmr.091022.
253. Harvey NC, Cole ZA, Crozier SR, Ntani G, Mahon PA, Robinson SM, Inskip HM, Godfrey KM, Dennison EM, Cooper C: Fetal and infant growth predict hip geometry at 6 y old: Findings from the Southampton Women’s Survey. Pediatric Research 2013, 74:450–45610.1038/pr.2013.119.
254. Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, Swaminathan R, Cooper C, Godfrey K: Low maternal vitamin D status and fetal bone development: Cohort study. Journal of Bone and Mineral Research 2010, 25:14–1910.1359/jbmr.090701Available: http://doi.wiley.com/10.1359/jbmr.090701.
255. Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Mäkitie O, Andersson S, Laitinen K, Lamberg-Allardt C: Maternal Vitamin D Status Determines Bone Variables in the Newborn. The Journal of Clinical Endocrinology & Metabolism 2010, 95:1749–175710.1210/jc.2009-1391Available: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2009-1391.
256. Viljakainen HT, Korhonen T, Hytinantti T, Laitinen EKA, Andersson S, Mäkitie O, Lamberg-Allardt C: Maternal vitamin D status affects bone growth in early childhood—a prospective cohort study. Osteoporosis International 2011, 22:883–89110.1007/s00198-010-1499-4Available: http://link.springer.com/10.1007/s00198-010-1499-4.
257. Zhu K, Whitehouse AJ, Hart PH, Kusel M, Mountain J, Lye S, Pennell C, Walsh JP: Maternal Vitamin D Status During Pregnancy and Bone Mass in Offspring at 20 Years of Age: A Prospective Cohort Study. Journal of Bone and Mineral Research 2014, 29:1088–109510.1002/jbmr.2138Available: http://doi.wiley.com/10.1002/jbmr.2138.
258. Kip SN, Strehler EE: Vitamin D 3 upregulates plasma membrane Ca 2+ -ATPase expression and potentiates apico-basal Ca 2+ flux in MDCK cells. American Journal of Physiology-Renal Physiology 2004, 286:F363–F36910.1152/ajprenal.00076.2003Available: http://www.ncbi.nlm.nih.gov/pubmed/14583431.
259. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA: Dietary protein restriction of pregnant rats in the F 0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F 1 and F 2 generations. British Journal of Nutrition 2007, 97:435–43910.1017/S0007114507352392Available: https://www.cambridge.org/core/product/identifier/S0007114507352392/type/journal{\_}article.
260. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC: Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR\(\alpha\) promoter of the offspring. British Journal of Nutrition 2008, 100:278–28210.1017/S0007114507894438Available: https://www.cambridge.org/core/product/identifier/S0007114507894438/type/journal{\_}article.
261. Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA: Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? British Journal of Nutrition 2007, 97:1036–104610.1017/S0007114507682920Available: https://www.cambridge.org/core/product/identifier/S0007114507682920/type/journal{\_}article.
262. Holroyd C, Harvey N, Dennison E, Cooper C: Epigenetic influences in the developmental origins of osteoporosis. Osteoporosis International 2012, 23:401–41010.1007/s00198-011-1671-5.
263. Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, Davies L, Murray R, Inskip HM, Gluckman PD, Hanson MA, Lillycrop KA, Cooper C: Childhood Bone Mineral Content Is Associated With Methylation Status of the RXRA Promoter at Birth. Journal of Bone and Mineral Research 2014, 29:600–60710.1002/jbmr.2056Available: http://doi.wiley.com/10.1002/jbmr.2056.
264. Curtis EM, Murray R, Titcombe P, Cook E, Clarke-Harris R, Costello P, Garratt E, Holbrook JD, Barton S, Inskip H, Godfrey KM, Bell CG, Cooper C, Lillycrop KA, Harvey NC: Perinatal DNA Methylation at CDKN2A Is Associated With Offspring Bone Mass: Findings From the Southampton Women’s Survey. Journal of Bone and Mineral Research 2017, 32:2030–204010.1002/jbmr.3153Available: http://doi.wiley.com/10.1002/jbmr.3153.
265. Richards EJ: Inherited epigenetic variation–revisiting soft inheritance. Nature reviews. Genetics 2006, 7:395–40110.1038/nrg1834Available: http://www.ncbi.nlm.nih.gov/pubmed/16534512.
266. Holland ML, Lowe R, Caton PW, Gemma C, Carbajosa G, Danson AF, Carpenter AAM, Loche E, Ozanne SE, Rakyan VK: Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 2016, 353:495–49810.1126/science.aaf7040Available: http://www.sciencemag.org/lookup/doi/10.1126/science.aaf7040.
267. Dogan MV, Beach SRH, Philibert RA: Genetically contextual effects of smoking on genome wide DNA methylation. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2017, 174:595–60710.1002/ajmg.b.32565Available: http://doi.wiley.com/10.1002/ajmg.b.32565.
268. Dai L, Mehta A, Mordukhovich I, Just AC, Shen J, Hou L, Koutrakis P, Sparrow D, Vokonas PS, Baccarelli AA, Schwartz JD: Differential DNA methylation and PM 2.5 species in a 450K epigenome-wide association study. Epigenetics 2017, 12:139–14810.1080/15592294.2016.1271853Available: https://www.tandfonline.com/doi/full/10.1080/15592294.2016.1271853.
269. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai P-C, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, Ala-Korpela M, Albetti B, Ammerpohl O, Apperley JF, Beekman M, Bertazzi PA, Black SL, Blancher C, Bonder M-J, Brosch M, Carstensen-Kirberg M, et al.: Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 2017, 541:81–8610.1038/nature20784Available: http://www.ncbi.nlm.nih.gov/pubmed/28002404.
270. Min J, Hemani G, Smith GD, Relton CL, Suderman M: Meffil: efficient normalisation and analysis of very large DNA methylation samples. bioRxiv 2017, 44:12596310.1101/125963Available: https://www.biorxiv.org/content/early/2017/04/27/125963.
271. Jaffe AE, Irizarry RA: Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome biology 2014, 15:R3110.1186/gb-2014-15-2-r31Available: http://www.ncbi.nlm.nih.gov/pubmed/24495553.
272. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT: DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012, 13:8610.1186/1471-2105-13-86Available: http://www.biomedcentral.com/1471-2105/13/86.
273. Cardenas A, Allard C, Doyon M, Houseman EA, Bakulski KM, Perron P, Bouchard L, Hivert M-F: Validation of a DNA methylation reference panel for the estimation of nucleated cells types in cord blood. Epigenetics 2016, 11:773–77910.1080/15592294.2016.1233091Available: http://www.ncbi.nlm.nih.gov/pubmed/27668573.
274. Goede OM de, Razzaghian HR, Price EM, Jones MJ, Kobor MS, Robinson WP, Lavoie PM: Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clinical Epigenetics 2015, 7:9510.1186/s13148-015-0129-6Available: http://dx.doi.org/10.1186/s13148-015-0129-6.
275. Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, L. McKenney S, Witter F, Walston J, Feinberg AP, Fallin MD: DNA methylation of cord blood cell types: Applications for mixed cell birth studies. Epigenetics 2016, 11:354–36210.1080/15592294.2016.1161875Available: http://dx.doi.org/10.1080/15592294.2016.1161875.
276. Gervin K, Page CM, Aass HCD, Jansen MA, Fjeldstad HE, Andreassen BK, Duijts L, Meurs JB van, Zelm MC van, Jaddoe VW, Nordeng H, Knudsen GP, Magnus P, Nystad W, Staff AC, Felix JF, Lyle R: Cell type specific DNA methylation in cord blood: A 450K-reference data set and cell count-based validation of estimated cell type composition. Epigenetics 2016, 11:690–69810.1080/15592294.2016.1214782Available: http://dx.doi.org/10.1080/15592294.2016.1214782.
277. Leek JT, Storey JD: Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genetics 2007, 3:e16110.1371/journal.pgen.0030161Available: https://dx.plos.org/10.1371/journal.pgen.0030161.
278. Teschendorff AE, Zhuang J, Widschwendter M: Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics 2011, 27:1496–150510.1093/bioinformatics/btr171Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr171.
279. McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, Greenwood CMT: An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies. Genome Biology 2016, 17:8410.1186/s13059-016-0935-yAvailable: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y.
280. Teschendorff AE, Zheng SC: Cell-type deconvolution in epigenome-wide association studies: a review and recommendations. Epigenomics 2017, 9:757–76810.2217/epi-2016-0153Available: https://www.futuremedicine.com/doi/10.2217/epi-2016-0153.
281. Lin X, Tan JYL, Teh AL, Lim IY, Liew SJ, MacIsaac JL, Chong YS, Gluckman PD, Kobor MS, Cheong CY, Karnani N: Cell type-specific DNA methylation in neonatal cord tissue and cord blood: a 850K-reference panel and comparison of cell types. Epigenetics 2018, 13:941–95810.1080/15592294.2018.1522929Available: https://doi.org/10.1080/15592294.2018.1522929.
282. Wang S: Method to detect differentially methylated loci with case-control designs using Illumina arrays. Genetic Epidemiology 2011, 35:686–69410.1002/gepi.20619Available: http://doi.wiley.com/10.1002/gepi.20619.
283. Tsai PC, Bell JT: Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation. International Journal of Epidemiology 2015, 44:1429–144110.1093/ije/dyv041.
284. Graw S, Henn R, Thompson JA, Koestler DC: PwrEWAS: A user-friendly tool for comprehensive power estimation for epigenome wide association studies (EWAS). BMC Bioinformatics 2019, 20:1–1110.1186/s12859-019-2804-7.
285. Cohen J: Statisticsl Power Analysis for the Behavioural Sciences. 2nd ed. New York: Lawrence Erlbaum Associates; 1988.
286. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu C-J, Küpers LK, Oh SS, Hoyo C, Gruzieva O, Söderhäll C, Salas LA, Baïz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, et al.: DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. The American Journal of Human Genetics 2016, 98:680–69610.1016/j.ajhg.2016.02.019Available: http://www.ncbi.nlm.nih.gov/pubmed/27040690.
287. Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DMH, Miller R, Murphy SK: Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children’s Environmental Health Studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environmental Health Perspectives 2017, 125:511–52610.1289/EHP595Available: https://ehp.niehs.nih.gov/doi/10.1289/EHP595.
288. Partridge L, Deelen J, Slagboom PE: Facing up to the global challenges of ageing. Nature 2018, 561:45–5610.1038/s41586-018-0457-8Available: http://www.nature.com/articles/s41586-018-0457-8.
289. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E: From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019, 571:183–19210.1038/s41586-019-1365-2Available: http://www.nature.com/articles/s41586-019-1365-2.
290. Chuong EB, Elde NC, Feschotte C: Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics 2017, 18:71–8610.1038/nrg.2016.139Available: http://www.nature.com/articles/nrg.2016.139.
291. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M: Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011, 6:692–70210.4161/epi.6.6.16196Available: http://www.tandfonline.com/doi/abs/10.4161/epi.6.6.16196.
292. Horvath S, Oshima J, Martin GM, Lu AT, Quach A, Cohen H, Felton S, Matsuyama M, Lowe D, Kabacik S, Wilson JG, Reiner AP, Maierhofer A, Flunkert J, Aviv A, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Ferrucci L, Matsuyama S, Raj K: Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 2018, 10:1758–177510.18632/aging.101508Available: http://www.aging-us.com/article/101508/text.
293. Horvath S, Raj K: DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics 2018, 19:371–38410.1038/s41576-018-0004-3Available: http://www.nature.com/articles/s41576-018-0004-3.
294. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD: DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Molecular Cell 2018, 71:882–89510.1016/j.molcel.2018.08.008Available: https://doi.org/10.1016/j.molcel.2018.08.008.
295. Bhattacharyya S, Varshney U: Evolution of initiator tRNAs and selection of methionine as the initiating amino acid. RNA Biology 2016, 13:810–81910.1080/15476286.2016.1195943Available: http://dx.doi.org/10.1080/15476286.2016.1195943.
296. Kamhi E, Raitskin O, Sperling R, Sperling J: A potential role for initiator-tRNA in pre-mRNA splicing regulation. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:11319–1132410.1073/pnas.0911561107.
297. Birch J, Clarke CJ, Campbell AD, Campbell K, Mitchell L, Liko D, Kalna G, Strathdee D, Sansom OJ, Neilson M, Blyth K, Norman JC: The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biology Open 2016, 5:1371–137910.1242/bio.019075.
298. Rideout EJ, Marshall L, Grewal SS: Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proceedings of the National Academy of Sciences 2012, 109:1139–114410.1073/pnas.1113311109Available: http://www.pnas.org/cgi/doi/10.1073/pnas.1113311109.
299. Kolitz SE, Lorsch JR: Eukaryotic initiator tRNA: Finely tuned and ready for action. FEBS Letters 2010, 584:396–40410.1016/j.febslet.2009.11.047Available: http://doi.wiley.com/10.1016/j.febslet.2009.11.047.
300. Pavon-Eternod M, Gomes S, Rosner MR, Pan T: Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 2013, 19:461–46610.1261/rna.037507.112Available: http://www.ncbi.nlm.nih.gov/pubmed/23431330.
301. Eigen M, Lindemann B, Tietze M, Winkler-Oswatitsch R, Dress A, Haeseler A von: How old is the genetic code? Statistical geometry of tRNA provides an answer. Science 1989, 244:673–67910.1126/science.2497522Available: http://www.sciencemag.org/cgi/doi/10.1126/science.2497522.
302. Tavernarakis N: Ageing and the regulation of protein synthesis: a balancing act? Trends in Cell Biology 2008, 18:228–23510.1016/j.tcb.2008.02.004Available: https://linkinghub.elsevier.com/retrieve/pii/S0962892408000792.
303. Parisien M, Wang X, Pan T: Diversity of human tRNA genes from the 1000-genomes project. RNA Biology 2013, 10:1853–186710.4161/rna.27361Available: http://www.tandfonline.com/doi/full/10.4161/rna.27361.
304. Chan PP, Lowe TM: GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic acids research 2009, 37:D93–710.1093/nar/gkn787Available: http://www.ncbi.nlm.nih.gov/pubmed/18984615.
305. Torres AG: Enjoy the Silence: Nearly Half of Human tRNA Genes Are Silent. Bioinformatics and Biology Insights 2019, 13:11779322198684510.1177/1177932219868454Available: http://journals.sagepub.com/doi/10.1177/1177932219868454.
306. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J: Molecular Cell Biology, 4th edition. 4th ed. New York: W. H. Freeman; 2000 Available: https://www.ncbi.nlm.nih.gov/books/NBK21475/.
307. Schramm L: Recruitment of RNA polymerase III to its target promoters. Genes & Development 2002, 16:2593–262010.1101/gad.1018902Available: http://www.genesdev.org/cgi/doi/10.1101/gad.1018902.
308. Canella D, Praz V, Reina JH, Cousin P, Hernandez N: Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome research 2010, 20:710–2110.1101/gr.101337.109Available: http://www.ncbi.nlm.nih.gov/pubmed/20413673.
309. Dieci G, Sentenac A: Facilitated Recycling Pathway for RNA Polymerase III. Cell 1996, 84:245–25210.1016/S0092-8674(00)80979-4Available: https://linkinghub.elsevier.com/retrieve/pii/S0092867400809794.
310. Murawski M, Szczesniak B, Zoladek T, Hopper AK, Martin NC, Boguta M: maf1 mutation alters the subcellular localization of the Mod5 protein in yeast. Acta biochimica Polonica 1994, 41:441–8Available: http://www.ncbi.nlm.nih.gov/pubmed/7732762.
311. Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M: Maf1p, a Negative Effector of RNA Polymerase III in Saccharomyces cerevisiae. Molecular and Cellular Biology 2001, 21:5031–504010.1128/MCB.21.15.5031-5040.2001Available: http://www.ncbi.nlm.nih.gov/pubmed/11438659.
312. Vorländer MK, Baudin F, Moir RD, Wetzel R, Hagen WJH, Willis IM, Müller CW: Structural basis for RNA polymerase III transcription repression by Maf1. Nature Structural & Molecular Biology 2020, 10.1038/s41594-020-0383-yAvailable: http://www.nature.com/articles/s41594-020-0383-y.
313. Mange F, Praz V, Migliavacca E, Willis IM, Schütz F, Hernandez N: Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding–fasting response and the circadian clock. Genome Research 2017, 27:973–98410.1101/gr.217521.116Available: http://genome.cshlp.org/lookup/doi/10.1101/gr.217521.116.
314. Kennedy BK, Lamming DW: The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metabolism 2016, 23:990–100310.1016/j.cmet.2016.05.009Available: http://dx.doi.org/10.1016/j.cmet.2016.05.009.
315. Crighton D: p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. The EMBO Journal 2003, 22:2810–282010.1093/emboj/cdg265Available: http://emboj.embopress.org/cgi/doi/10.1093/emboj/cdg265.
316. Sutcliffe JE, Brown TRP, Allison SJ, Scott PH, White RJ: Retinoblastoma Protein Disrupts Interactions Required for RNA Polymerase III Transcription. Molecular and Cellular Biology 2000, 20:9192–920210.1128/MCB.20.24.9192-9202.2000Available: http://mcb.asm.org/cgi/doi/10.1128/MCB.20.24.9192-9202.2000.
317. Gomez-Roman N, Grandori C, Eisenman RN, White RJ: Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003, 421:290–29410.1038/nature01327Available: http://www.nature.com/articles/nature01327.
318. Krishnan P, Ghosh S, Wang B, Heyns M, Li D, Mackey JR, Kovalchuk O, Damaraju S: Genome-wide profiling of transfer RNAs and their role as novel prognostic markers for breast cancer. Scientific Reports 2016, 6:3284310.1038/srep32843Available: http://dx.doi.org/10.1038/srep32843.
319. Huang S, Sun B, Xiong Z, Shu Y, Zhou H, Zhang W, Xiong J, Li Q: The dysregulation of tRNAs and tRNA derivatives in cancer. Journal of Experimental & Clinical Cancer Research 2018, 37:10110.1186/s13046-018-0745-zAvailable: https://jeccr.biomedcentral.com/articles/10.1186/s13046-018-0745-z.
320. Besser D, Götz F, Schulze-Forster K, Wagner H, Kröger H, Simon D: DNA methylation inhibits transcription by RNA polymerase III of a tRNA gene, but not of a 5S rRNA gene. FEBS letters 1990, 269:358–6210.1016/0014-5793(90)81193-RAvailable: http://www.ncbi.nlm.nih.gov/pubmed/2401361.
321. Varshney D, Vavrova-Anderson J, Oler AJ, Cowling VH, Cairns BR, White RJ: SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nature communications 2015, 6:656910.1038/ncomms7569Available: http://www.ncbi.nlm.nih.gov/pubmed/25798578.
322. Gerber A, Ito K, Chu C-S, Roeder RG: Gene-Specific Control of tRNA Expression by RNA Polymerase II. Molecular Cell 2020, 78:765–778.e710.1016/j.molcel.2020.03.023Available: https://doi.org/10.1016/j.molcel.2020.03.023.
323. Gingold H, Dahan O, Pilpel Y: Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome. Nucleic acids research 2012, 40:10053–6310.1093/nar/gks772Available: http://www.ncbi.nlm.nih.gov/pubmed/22941644.
324. Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, Simonyan V, Kimchi-Sarfaty C: A new and updated resource for codon usage tables. BMC Bioinformatics 2017, 18:39110.1186/s12859-017-1793-7Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1793-7.
325. Dittmar KA, Goodenbour JM, Pan T: Tissue-specific differences in human transfer RNA expression. PLoS genetics 2006, 2:e22110.1371/journal.pgen.0020221Available: http://www.ncbi.nlm.nih.gov/pubmed/17194224.
326. Sagi D, Rak R, Gingold H, Adir I, Maayan G, Dahan O, Broday L, Pilpel Y, Rechavi O: Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLOS Genetics 2016, 12:e100626410.1371/journal.pgen.1006264Available: http://www.ncbi.nlm.nih.gov/pubmed/27560950.
327. Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, Czech A, Kleizen B, Ostedgaard LS, Braakman I, Sheppard DN, Ignatova Z: Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLOS Biology 2017, 15:e200077910.1371/journal.pbio.2000779Available: http://dx.plos.org/10.1371/journal.pbio.2000779.
328. Ishimura R, Nagy G, Dotu I, Zhou H, Yang X-L, Schimmel P, Senju S, Nishimura Y, Chuang JH, Ackerman SL: RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science (New York, N.Y.) 2014, 345:455–910.1126/science.1249749Available: http://www.ncbi.nlm.nih.gov/pubmed/25061210.
329. Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I: MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Research 2018, 46:D152–D15910.1093/nar/gkx1075Available: http://academic.oup.com/nar/article/46/D1/D152/4653530.
330. Lee YS, Shibata Y, Malhotra A, Dutta A: A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes & development 2009, 23:2639–4910.1101/gad.1837609Available: http://www.ncbi.nlm.nih.gov/pubmed/19933153.
331. Torres AG, Reina O, Stephan-Otto Attolini C, Ribas de Pouplana L: Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proceedings of the National Academy of Sciences 2019, 116:20182112010.1073/pnas.1821120116Available: http://www.pnas.org/lookup/doi/10.1073/pnas.1821120116.
332. Li S, Xu Z, Sheng J: tRNA-Derived Small RNA: A Novel Regulatory Small Non-Coding RNA. Genes 2018, 9:24610.3390/genes9050246Available: http://www.mdpi.com/2073-4425/9/5/246.
333. Xu W-L, Yang Y, Wang Y-D, Qu L-H, Zheng L-L: Computational Approaches to tRNA-Derived Small RNAs. Non-Coding RNA 2017, 3:210.3390/ncrna3010002Available: http://www.mdpi.com/2311-553X/3/1/2.
334. Keam SP, Young PE, McCorkindale AL, Dang THY, Clancy JL, Humphreys DT, Preiss T, Hutvagner G, Martin DIK, Cropley JE, Suter CM: The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells. Nucleic Acids Research 2014, 42:8984–899510.1093/nar/gku620Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku620.
335. Honda S, Kawamura T, Loher P, Morichika K, Rigoutsos I, Kirino Y: The biogenesis pathway of tRNA-derived piRNAs in Bombyx germ cells. Nucleic Acids Research 2017, 45:9108–912010.1093/nar/gkx537Available: http://academic.oup.com/nar/article/45/15/9108/3883741/The-biogenesis-pathway-of-tRNAderived-piRNAs-in.
336. Tosar JP, Rovira C, Cayota A: Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues. Communications Biology 2018, 1:210.1038/s42003-017-0001-7Available: http://www.nature.com/articles/s42003-017-0001-7.
337. Loher P, Telonis AG, Rigoutsos I: MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Scientific reports 2017, 7:4118410.1038/srep41184Available: http://www.ncbi.nlm.nih.gov/pubmed/28220888.
338. Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J, Chu K, Zhang F, Chua M-S, So S, Zhang QC, Sarnow P, Kay MA: A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017, 552:57–6210.1038/nature25005Available: http://www.nature.com/articles/nature25005.
339. Martinez G, Choudury SG, Slotkin RK: tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Research 2017, 45:5142–515210.1093/nar/gkx103Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx103.
340. Schimmel P: The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nature reviews. Molecular cell biology 2018, 19:45–5810.1038/nrm.2017.77Available: http://www.ncbi.nlm.nih.gov/pubmed/28875994.
341. Cristodero M, Polacek N: The multifaceted regulatory potential of tRNA-derived fragments. Non-coding RNA Investigation 2017, 1:7–710.21037/ncri.2017.08.07Available: http://ncri.amegroups.com/article/view/3820/4459.
342. Pace DA: Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae. Journal of Experimental Biology 2006, 209:158–17010.1242/jeb.01962Available: http://jeb.biologists.org/cgi/doi/10.1242/jeb.01962.
343. Nwanaji-Enwerem JC, Weisskopf MG, Baccarelli AA: Multi-tissue DNA methylation age: Molecular relationships and perspectives for advancing biomarker utility. Ageing Research Reviews 2018, 45:15–2310.1016/j.arr.2018.04.005Available: https://doi.org/10.1016/j.arr.2018.04.005.
344. Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C: Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007, 6:95–11010.1111/j.1474-9726.2006.00267.xAvailable: http://doi.wiley.com/10.1111/j.1474-9726.2006.00267.x.
345. Filer D, Thompson MA, Takhaveev V, Dobson AJ, Kotronaki I, Green JWM, Heinemann M, Tullet JMA, Alic N: RNA polymerase III limits longevity downstream of TORC1. Nature 2017, 552:263–26710.1038/nature25007Available: http://www.nature.com/articles/nature25007.
346. Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D, Mote P, Martin DI: 5’ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 2013, 14:29810.1186/1471-2164-14-298Available: http://www.ncbi.nlm.nih.gov/pubmed/23638709.
347. Bhargava P: Epigenetic regulation of transcription by RNA polymerase III. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2013, 1829:1015–102510.1016/j.bbagrm.2013.05.005Available: https://linkinghub.elsevier.com/retrieve/pii/S1874939913001004.
348. Bhargava P: Epigenetic regulation of transcription by RNA polymerase III. Biochimica et biophysica acta 2013, 1829:1015–2510.1016/j.bbagrm.2013.05.005Available: http://www.ncbi.nlm.nih.gov/pubmed/23732820.
349. Wilusz JE: Controlling translation via modulation of tRNA levels. Wiley Interdisciplinary Reviews: RNA 2015, 6:453–47010.1002/wrna.1287Available: http://doi.wiley.com/10.1002/wrna.1287.
350. Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM: ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nature Methods 2015, 12:879–88410.1038/nmeth.3508Available: http://www.nature.com/articles/nmeth.3508.
351. Shigematsu M, Honda S, Loher P, Telonis AG, Rigoutsos I, Kirino Y: YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic acids research 2017, 45:e7010.1093/nar/gkx005Available: http://www.ncbi.nlm.nih.gov/pubmed/28108659.
352. Gogakos T, Brown M, Garzia A, Meyer C, Hafner M, Tuschl T: Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Reports 2017, 20:1463–147510.1016/j.celrep.2017.07.029Available: http://dx.doi.org/10.1016/j.celrep.2017.07.029.
353. Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA, Haussler D, Kamakaka RT: Human tRNA genes function as chromatin insulators. The EMBO journal 2012, 31:330–5010.1038/emboj.2011.406Available: http://www.ncbi.nlm.nih.gov/pubmed/22085927.
354. Van Bortle K, Phanstiel DH, Snyder MP: Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biology 2017, 18:18010.1186/s13059-017-1310-3Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1310-3.
355. Noma K, Cam HP, Maraia RJ, Grewal SIS: A role for TFIIIC transcription factor complex in genome organization. Cell 2006, 125:859–7210.1016/j.cell.2006.04.028Available: http://www.ncbi.nlm.nih.gov/pubmed/16751097.
356. Syddall H, Aihie Sayer A, Dennison E, Martin H, Barker D, Cooper C: Cohort Profile: The Hertfordshire Cohort Study. International Journal of Epidemiology 2005, 34:1234–124210.1093/ije/dyi127Available: http://academic.oup.com/ije/article/34/6/1234/707357/Cohort-Profile-The-Hertfordshire-Cohort-Study.
357. Amemiya HM, Kundaje A, Boyle AP: The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Scientific Reports 2019, 9:935410.1038/s41598-019-45839-zAvailable: http://www.nature.com/articles/s41598-019-45839-z.
358. Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, Ribeca P: Fast Computation and Applications of Genome Mappability. PLoS ONE 2012, 7:e3037710.1371/journal.pone.0030377Available: https://dx.plos.org/10.1371/journal.pone.0030377.
359. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473:43–4910.1038/nature09906Available: http://www.nature.com/articles/nature09906.
360. Bell CG, Wilson GA, Butcher LM, Roos C, Walter L, Beck S: Human-specific CpG "beacons" identify loci associated with human-specific traits and disease. Epigenetics 2012, 7:1188–9910.4161/epi.22127Available: http://www.ncbi.nlm.nih.gov/pubmed/22968434.
361. North BV, Curtis D, Sham PC: A Note on the Calculation of Empirical P Values from Monte Carlo Procedures. The American Journal of Human Genetics 2003, 72:498–49910.1086/346173Available: https://linkinghub.elsevier.com/retrieve/pii/S0002929707605618.
362. Ewels P, Magnusson M, Lundin S, Käller M: MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England) 2016, 32:3047–810.1093/bioinformatics/btw354Available: http://www.ncbi.nlm.nih.gov/pubmed/27312411.
363. Krueger F: Trim Galore. 2015, Available: https://www.bioinformatics.babraham.ac.uk/projects/trim{\_}galore/.
364. Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17:1010.14806/ej.17.1.200Available: http://journal.embnet.org/index.php/embnetjournal/article/view/200.
365. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nature Methods 2012, 9:357–35910.1038/nmeth.1923Available: http://www.ncbi.nlm.nih.gov/pubmed/22388286.
366. Müller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lengauer T, Bock C: RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biology 2019, 20:5510.1186/s13059-019-1664-9Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1664-9.
367. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 2015, 43:e47–e4710.1093/nar/gkv007Available: http://www.ncbi.nlm.nih.gov/pubmed/25605792.
368. Meuleman W: Epilogos. 2019, Available: https://epilogos.altius.org/ https://github.com/Altius/epilogos.
369. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, Söderhäll C, Scheynius A, Kere J: Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. PLoS ONE 2012, 7:e4136110.1371/journal.pone.0041361Available: https://dx.plos.org/10.1371/journal.pone.0041361.
370. Sean D, Meltzer PS: GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23:1846–184710.1093/bioinformatics/btm254.
371. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM: Toward a Shared Vision for Cancer Genomic Data. New England Journal of Medicine 2016, 375:1109–111210.1056/NEJMp1607591Available: http://www.nejm.org/doi/10.1056/NEJMp1607591.
372. Yang Z, Wong A, Kuh D, Paul DS, Rakyan VK, Leslie RD, Zheng SC, Widschwendter M, Beck S, Teschendorff AE: Correlation of an epigenetic mitotic clock with cancer risk. Genome Biology 2016, 17:20510.1186/s13059-016-1064-3Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1064-3.
373. Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I, Müller F-J, Wang Y-C, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee T, D’Lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U, Keirstead HS, Loring JF, Laurent LC: Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and Their Differentiated Derivatives. Cell Stem Cell 2012, 10:620–63410.1016/j.stem.2012.02.013Available: http://www.ncbi.nlm.nih.gov/pubmed/10449618.
374. Juzenas S, Venkatesh G, Hübenthal M, Hoeppner MP, Du ZG, Paulsen M, Rosenstiel P, Senger P, Hofmann-Apitius M, Keller A, Kupcinskas L, Franke A, Hemmrich-Stanisak G: A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Research 2017, 45:9290–930110.1093/nar/gkx706Available: http://academic.oup.com/nar/article/45/16/9290/4080663.
375. Petkovich DA, Podolskiy DI, Lobanov AV, Lee S-G, Miller RA, Gladyshev VN: Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metabolism 2017, 25:954–960.e610.1016/j.cmet.2017.03.016Available: https://linkinghub.elsevier.com/retrieve/pii/S1550413117301687.
376. Lowe TM, Chan PP: tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research 2016, 44:W54–W5710.1093/nar/gkw413Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw413.
377. Geiger H, Haan G de, Florian MC: The ageing haematopoietic stem cell compartment. Nature Reviews Immunology 2013, 13:376–38910.1038/nri3433Available: http://dx.doi.org/10.1038/nri3433.
378. Schmitt BM, Rudolph KLM, Karagianni P, Fonseca NA, White RJ, Talianidis I, Odom DT, Marioni JC, Kutter C: High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA–tRNA interface. Genome Research 2014, 24:1797–180710.1101/gr.176784.114Available: http://www.ncbi.nlm.nih.gov/pubmed/25122613.
379. Gu Z, Eils R, Schlesner M: Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32:2847–284910.1093/bioinformatics/btw313Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw313.
380. Thornlow BP, Armstrong J, Holmes AD, Howard JM, Corbett-Detig RB, Lowe TM: Predicting transfer RNA gene activity from sequence and genome context. Genome Research 2020, 30:85–9410.1101/gr.256164.119.
381. Ehrlich M: DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics 2019, 14:1141–116310.1080/15592294.2019.1638701Available: http://www.ncbi.nlm.nih.gov/pubmed/31284823.
382. Xu Z, Taylor JA: Genome-wide age-related DNA methylation changes in blood and other tissues relate to histone modification, expression and cancer. Carcinogenesis 2014, 35:356–36410.1093/carcin/bgt391Available: https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgt391.
383. Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT: Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics and Chromatin 2018, 11:1–1110.1186/s13072-018-0191-3Available: https://doi.org/10.1186/s13072-018-0191-3.
384. Zhu T, Zheng SC, Paul DS, Horvath S, Teschendorff AE: Cell and tissue type independent age-associated DNA methylation changes are not rare but common. Aging 2018, 10:3541–355710.18632/aging.101666Available: http://www.ncbi.nlm.nih.gov/pubmed/30482885.
385. Goodenbour JM, Pan T: Diversity of tRNA genes in eukaryotes. Nucleic acids research 2006, 34:6137–4610.1093/nar/gkl725Available: http://www.ncbi.nlm.nih.gov/pubmed/17088292.
386. Geslain R, Pan T: Functional Analysis of Human tRNA Isodecoders. Journal of Molecular Biology 2010, 396:821–83110.1016/j.jmb.2009.12.018Available: https://linkinghub.elsevier.com/retrieve/pii/S002228360901523X.
387. Li S, Shi X, Chen M, Xu N, Sun D, Bai R, Chen H, Ding K, Sheng J, Xu Z: Angiogenin promotes colorectal cancer metastasis via tiRNA production. International Journal of Cancer 2019, :ijc.3224510.1002/ijc.32245Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.32245.
388. Plotkin JB, Robins H, Levine AJ: Tissue-specific codon usage and the expression of human genes. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:12588–9110.1073/pnas.0404957101Available: http://www.ncbi.nlm.nih.gov/pubmed/15314228.
389. Schmitt BM, Rudolph KLM, Karagianni P, Fonseca NA, White RJ, Talianidis I, Odom DT, Marioni JC, Kutter C: High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA-tRNA interface. Genome research 2014, 24:1797–80710.1101/gr.176784.114Available: http://www.ncbi.nlm.nih.gov/pubmed/25122613.
390. Powell JR, Moriyama EN: Evolution of codon usage bias in Drosophila. Proceedings of the National Academy of Sciences 1997, 94:7784–779010.1073/pnas.94.15.7784Available: http://www.pnas.org/cgi/doi/10.1073/pnas.94.15.7784.
391. Rudolph KLM, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, Odom DT: Codon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States. PLoS genetics 2016, 12:e100602410.1371/journal.pgen.1006024Available: http://www.ncbi.nlm.nih.gov/pubmed/27166679.
392. Gu T, Lin X, Cullen SM, Luo M, Jeong M, Estecio M, Shen J, Hardikar S, Sun D, Su J, Rux D, Guzman A, Lee M, Qi LS, Chen J-J, Kyba M, Huang Y, Chen T, Li W, Goodell MA: DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biology 2018, 19:8810.1186/s13059-018-1464-7Available: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1464-7.
393. Wang Y, Brady KS, Caiello BP, Ackerson SM, Stewart JA: Human CST suppresses origin licensing and promotes AND-1/Ctf4 chromatin association. Life Science Alliance 2019, 2:e20180027010.26508/lsa.201800270Available: http://www.life-science-alliance.org/lookup/doi/10.26508/lsa.201800270.
394. Sargolzaeiaval F, Zhang J, Schleit J, Lessel D, Kubisch C, Precioso DR, Sillence D, Hisama FM, Dorschner M, Martin GM, Oshima J: CTC1 mutations in a Brazilian family with progeroid features and recurrent bone fractures. Molecular Genetics & Genomic Medicine 2018, 6:1148–115610.1002/mgg3.495Available: http://doi.wiley.com/10.1002/mgg3.495.
395. Thornlow BP, Hough J, Roger JM, Gong H, Lowe TM, Corbett-Detig RB: Transfer RNA genes experience exceptionally elevated mutation rates. Proceedings of the National Academy of Sciences 2018, 115:8996–900110.1073/pnas.1801240115Available: http://www.pnas.org/lookup/doi/10.1073/pnas.1801240115.
396. Iben JR, Maraia RJ: tRNA gene copy number variation in humans. Gene 2014, 536:376–38410.1016/j.gene.2013.11.049Available: https://linkinghub.elsevier.com/retrieve/pii/S0378111913015758.
397. Darrow EM, Chadwick BP: A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Research 2014, 42:6421–643510.1093/nar/gku280Available: http://academic.oup.com/nar/article/42/10/6421/2435926/A-novel-tRNA-variable-number-tandem-repeat-at.
398. Müller CA, Nieduszynski CA: DNA replication timing influences gene expression level. The Journal of Cell Biology 2017, 216:1907–191410.1083/jcb.201701061Available: http://www.jcb.org/lookup/doi/10.1083/jcb.201701061.
399. Du Q, Bert SA, Armstrong NJ, Caldon CE, Song JZ, Nair SS, Gould CM, Luu P-L, Peters T, Khoury A, Qu W, Zotenko E, Stirzaker C, Clark SJ: Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nature Communications 2019, 10:41610.1038/s41467-019-08302-1Available: http://dx.doi.org/10.1038/s41467-019-08302-1.
400. Cruickshanks HA, McBryan T, Nelson DM, VanderKraats ND, Shah PP, Tuyn J van, Singh Rai T, Brock C, Donahue G, Dunican DS, Drotar ME, Meehan RR, Edwards JR, Berger SL, Adams PD: Senescent cells harbour features of the cancer epigenome. Nature Cell Biology 2013, 15:1495–150610.1038/ncb2879Available: http://www.ncbi.nlm.nih.gov/pubmed/24270890.
401. Sun L, Yu R, Dang W: Chromatin Architectural Changes during Cellular Senescence and Aging. Genes 2018, 9:21110.3390/genes9040211Available: http://www.mdpi.com/2073-4425/9/4/211.
402. Moskowitz DM, Zhang DW, Hu B, Le Saux S, Yanes RE, Ye Z, Buenrostro JD, Weyand CM, Greenleaf WJ, Goronzy JJ: Epigenomics of human CD8 T cell differentiation and aging. Science Immunology 2017, 2:eaag019210.1126/sciimmunol.aag0192Available: https://immunology.sciencemag.org/lookup/doi/10.1126/sciimmunol.aag0192.
403. Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H, Terooatea T, Sasaki T, Suzuki T, Valentine M, Pascarella G, Okazaki Y, Suzuki H, Shin JW, Minoda A, Taniuchi I, Okano H, Arai Y, Hirose N, Carninci P: Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proceedings of the National Academy of Sciences of the United States of America 2019, 116:24242–2425110.1073/pnas.1907883116.
404. Deniz Ö, Frost JM, Branco MR: Regulation of transposable elements by DNA modifications. Nature Reviews Genetics 2019, 20:417–43110.1038/s41576-019-0106-6.
405. Kazazian HH, Moran JV: Mobile DNA in health and disease. New England Journal of Medicine 2017, 377:361–37010.1056/NEJMra1510092.
406. Gregory TR: Synergy between sequence and size in large-scale genomics. Nature Reviews Genetics 2005, 6:699–70810.1038/nrg1674.
407. Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes & development 2011, 25:1010–2210.1101/gad.2037511Available: http://www.ncbi.nlm.nih.gov/pubmed/21576262.
408. Hellman A, Chess A: Gene body-specific methylation on the active X chromosome. Science 2007, 315:1141–114310.1126/science.1136352.
409. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74–7910.1038/nature10442Available: http://dx.doi.org/10.1038/nature10442.
410. Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA: The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Research 2017, 27:118–13210.1101/gr.207522.116Available: http://www.ncbi.nlm.nih.gov/pubmed/27999094.
411. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A: Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mechanisms of Ageing and Development 2009, 130:234–23910.1016/j.mad.2008.12.003Available: https://linkinghub.elsevier.com/retrieve/pii/S0047637408002820.
412. Dewannieux M, Esnault C, Heidmann T: LINE-mediated retrotransposition of marked Alu sequences. Nature Genetics 2003, 35:41–4810.1038/ng1223Available: http://www.nature.com/articles/ng1223.
413. Deininger P: Alu elements: know the SINEs. Genome Biology 2011, 12:23610.1186/gb-2011-12-12-236Available: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-12-236.
414. Ullu E, Tschudi C: Alu sequences are processed 7SL RNA genes. Nature 1984, 312:171–17210.1038/312171a0Available: http://www.nature.com/articles/312171a0.
415. Cordaux R, Batzer MA: The impact of retrotransposons on human genome evolution. Nature Reviews Genetics 2009, 10:691–70310.1038/nrg2640Available: http://www.nature.com/articles/nrg2640.
416. Quentin Y: Origin of the Alu family: Nucleic Acids Research 1992, 20:3397–3401.
417. Chen L-L, Carmichael GG: Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 2008, 7:3294–330110.4161/cc.7.21.6927Available: http://www.tandfonline.com/doi/abs/10.4161/cc.7.21.6927.
418. Batzer MA, Deininger PL: Alu repeats and human genomic diversity. Nature Reviews Genetics 2002, 3:370–37910.1038/nrg798Available: http://www.nature.com/articles/nrg798.
419. Ade C, Roy-Engel AM, Deininger PL: Alu elements: an intrinsic source of human genome instability. Current Opinion in Virology 2013, 3:639–64510.1016/j.coviro.2013.09.002Available: https://linkinghub.elsevier.com/retrieve/pii/S1879625713001533.
420. Belancio VP, Hedges DJ, Deininger P: Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health. Genome Research 2008, 18:343–35810.1101/gr.5558208Available: http://www.genome.org/cgi/doi/10.1101/gr.5558208.
421. Chen L-L, Yang L: ALU ternative Regulation for Gene Expression. Trends in Cell Biology 2017, 27:480–49010.1016/j.tcb.2017.01.002Available: https://linkinghub.elsevier.com/retrieve/pii/S0962892417300028.
422. Ferrari R, de Llobet Cucalon LI, Di Vona C, Le Dilly F, Vidal E, Lioutas A, Oliete JQ, Jochem L, Cutts E, Dieci G, Vannini A, Teichmann M, Luna S de la, Beato M: TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Molecular Cell 2019, :1–1310.1016/j.molcel.2019.10.020Available: https://linkinghub.elsevier.com/retrieve/pii/S1097276519307981.
423. Polak P, Domany E: Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC genomics 2006, 7:13310.1186/1471-2164-7-133Available: http://www.ncbi.nlm.nih.gov/pubmed/16740159.
424. Su M, Han D, Boyd-Kirkup J, Yu X, Han J-DJ: Evolution of Alu Elements toward Enhancers. Cell Reports 2014, 7:376–38510.1016/j.celrep.2014.03.011Available: http://dx.doi.org/10.1016/j.celrep.2014.03.011.
425. Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, Farnham PJ: Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biology 2014, 15:46910.1186/s13059-014-0469-0Available: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0469-0.
426. Ward MC, Wilson MD, Barbosa-Morais NL, Schmidt D, Stark R, Pan Q, Schwalie PC, Menon S, Lukk M, Watt S, Thybert D, Kutter C, Kirschner K, Flicek P, Blencowe BJ, Odom DT: Latent Regulatory Potential of Human-Specific Repetitive Elements. Molecular Cell 2013, 49:262–27210.1016/j.molcel.2012.11.013Available: http://dx.doi.org/10.1016/j.molcel.2012.11.013.
427. Xie M, Hong C, Zhang B, Lowdon RF, Xing X, Li D, Zhou X, Lee HJ, Maire CL, Ligon KL, Gascard P, Sigaroudinia M, Tlsty TD, Kadlecek T, Weiss A, O’Geen H, Farnham PJ, Madden PAF, Mungall AJ, Tam A, Kamoh B, Cho S, Moore R, Hirst M, Marra MA, Costello JF, Wang T: DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics 2013, 45:836–84110.1038/ng.2649Available: http://www.ncbi.nlm.nih.gov/pubmed/23708189.
428. Zhang X-O, Gingeras TR, Weng Z: Genome-wide analysis of polymerase III–transcribed Alu elements suggests cell-type–specific enhancer function. Genome Research 2019, 29:1402–141410.1101/gr.249789.119Available: http://genome.cshlp.org/lookup/doi/10.1101/gr.249789.119.
429. Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, Zhang D, Li D, Xing X, Kim S, O’Donnell D, Gordon JI, Wang T: Transposable elements drive widespread expression of oncogenes in human cancers. Nature Genetics 2019, 51:611–61710.1038/s41588-019-0373-3Available: http://dx.doi.org/10.1038/s41588-019-0373-3.
430. Rajendiran S, Gibbs LD, Van Treuren T, Klinkebiel DL, Vishwanatha JK: MIEN1 is tightly regulated by SINE Alu methylation in its promoter. Oncotarget 2016, 7:65307–6531910.18632/oncotarget.11675Available: http://www.oncotarget.com/fulltext/11675.
431. Jintaridth P, Tungtrongchitr R, Preutthipan S, Mutirangura A: Hypomethylation of Alu Elements in Post-Menopausal Women with Osteoporosis. PLoS ONE 2013, 8:e7038610.1371/journal.pone.0070386Available: https://dx.plos.org/10.1371/journal.pone.0070386.
432. Lu S, Niu Z, Chen Y, Tu Q, Zhang Y, Chen W, Tong W, Zhang Z: Repetitive Element DNA Methylation is Associated with Menopausal Age. Aging and Disease 2018, 9:43510.14336/AD.2017.0810Available: http://www.aginganddisease.org/EN/10.14336/AD.2017.0810.
433. Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, Liu C, Boeke JD, Avramopoulos D, Burns KH: Structural variants caused by Alu insertions are associated with risks for many human diseases. Proceedings of the National Academy of Sciences 2017, 114:E3984–E399210.1073/pnas.1704117114Available: http://www.pnas.org/lookup/doi/10.1073/pnas.1704117114.
434. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, Ideker T, Issa J-PJ, Kelsey KT, Marioni RE, Reik W, Relton CL, Schalkwyk LC, Teschendorff AE, Wagner W, Zhang K, Rakyan VK: DNA methylation aging clocks: challenges and recommendations. Genome biology 2019, 20:24910.1186/s13059-019-1824-yAvailable: http://www.ncbi.nlm.nih.gov/pubmed/31767039.
435. Mozhui K, Pandey AK: Conserved effect of aging on DNA methylation and association with EZH2 polycomb protein in mice and humans. Mechanisms of Ageing and Development 2017, 162:27–3710.1016/j.mad.2017.02.006Available: http://dx.doi.org/10.1016/j.mad.2017.02.006.
436. Zhang Y, Hapala J, Brenner H, Wagner W: Individual CpG sites that are associated with age and life expectancy become hypomethylated upon aging. Clinical Epigenetics 2017, 9:910.1186/s13148-017-0315-9Available: http://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-017-0315-9.
437. Smit A, Hubley R, Green: Repeat Masker. 2009, Available: http://www.repeatmasker.org.
438. Privé F, Aschard H, Blum MGB: Efficient Implementation of Penalized Regression for Genetic Risk Prediction. Genetics 2019, 212:65–7410.1534/genetics.119.302019Available: http://www.genetics.org/lookup/doi/10.1534/genetics.119.302019 https://figshare.com/articles/code/7178750 https://gsajournals.figshare.com/articles/Supplemental{\_}Material{\_}for{\_}Priv{\_}Aschard{\_}and{\_}Blum{\_}2019/7851470.
439. Fairley S, Lowy-Gallego E, Perry E, Flicek P: The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Research 2020, 48:D941–D94710.1093/nar/gkz836Available: https://academic.oup.com/nar/article/48/D1/D941/5580898.
440. Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC, Calabresi PA, Cooper TA, Burns KH: Alu insertion variants alter mRNA splicing. Nucleic Acids Research 2019, 47:421–43110.1093/nar/gky1086.
441. Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani RJ: Strong rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society. Series B: Statistical Methodology 2012, 74:245–26610.1111/j.1467-9868.2011.01004.xAvailable: http://arxiv.org/abs/1011.2234.
442. Snir S, Farrell C, Pellegrini M: Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 2019, 0:1–1510.1080/15592294.2019.1623634Available: https://www.tandfonline.com/doi/full/10.1080/15592294.2019.1623634.
443. Hellen EH, Brookfield JF: Alu elements in primates are preferentially lost from areas of high GC content. PeerJ 2013, 1:e7810.7717/peerj.78Available: https://peerj.com/articles/78.
444. Meyer DH: A transcriptome based aging clock near the theoretical limit of accuracy. 2020, 10.1101/2020.05.29.123430Available: https://doi.org/10.1101/2020.05.29.123430.
445. Hysi PG, Young TL, Mackey DA, Andrew T, Fernández-Medarde A, Solouki AM, Hewitt AW, Macgregor S, Vingerling JR, Li Y, Ikram MK, Fai LY, Sham PC, Manyes L, Porteros A, Lopes MC, Carbonaro F, Fahy SJ, Martin NG, Duijn CM van, Spector TD, Rahi JS, Santos E, Klaver CCW, Hammond CJ: A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nature Genetics 2010, 42:902–90510.1038/ng.664Available: http://www.nature.com/articles/ng.664.
446. Loh P, Palamara PF, Price AL: Fast and accurate long-range phasing in a UK Biobank cohort. Nature Genetics 2016, 48:811–81610.1038/ng.3571Available: http://www.nature.com/articles/ng.3571.
447. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, Schlessinger D, Stambolian D, Loh P-R, Iacono WG, Swaroop A, Scott LJ, Cucca F, Kronenberg F, Boehnke M, Abecasis GR, Fuchsberger C: Next-generation genotype imputation service and methods. Nature Genetics 2016, 48:1284–128710.1038/ng.3656Available: http://www.nature.com/articles/ng.3656.
448. McCarthy S: A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics 2016, 48:1279–128310.1038/ng.3643Available: http://www.nature.com/articles/ng.3643.
449. Zhou X, Stephens M: Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 2012, 44:821–82410.1038/ng.2310Available: http://www.nature.com/articles/ng.2310.
450. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ: LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010, 26:2336–233710.1093/bioinformatics/btq419Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq419.
451. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag D, Burgess S, Danesh J, Young R, Butterworth AS: PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics 2016, 32:3207–320910.1093/bioinformatics/btw373Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw373.
452. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag D, Burgess S, Danesh J, Young R, Butterworth AS: PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics (Oxford, England) 2016, 32:3207–320910.1093/bioinformatics/btw373Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5048068.
453. Gagliano Taliun SA, VandeHaar P, Boughton AP, Welch RP, Taliun D, Schmidt EM, Zhou W, Nielsen JB, Willer CJ, Lee S, Fritsche LG, Boehnke M, Abecasis GR: Exploring and visualizing large-scale genetic associations by using PheWeb. Nature Genetics 2020, 52:550–55210.1038/s41588-020-0622-5.
454. Cancer Research UK: Gallbladder cancer incidence statistics. 2020, Available: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/gallbladder-cancer/incidence{\#}heading-One.Accessed 17 September 2020.
455. Löhler J, Cebulla M, Shehata-Dieler W, Volkenstein S, Völter C, Walther LE: Hearing impairment in old age. Deutsches Aerzteblatt Online 2019, 116:301–31010.3238/arztebl.2019.0301Available: https://www.aerzteblatt.de/10.3238/arztebl.2019.0301.
456. Hileeto D, Fadare O, Martel M, Zheng W: Age dependent association of endometrial polyps with increased risk of cancer involvement. World journal of surgical oncology 2005, 3:810.1186/1477-7819-3-8Available: http://www.ncbi.nlm.nih.gov/pubmed/15703068.
457. Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S, Trichur Raju, Sathyaprabha TN: Influence of age and gender on autonomic regulation of heart. Journal of Clinical Monitoring and Computing 2013, 27:259–26410.1007/s10877-012-9424-3Available: http://link.springer.com/10.1007/s10877-012-9424-3.
458. Nikitin NP, Witte KKA, Ingle L, Clark AL, Farnsworth TA, Cleland JGF: Longitudinal myocardial dysfunction in healthy older subjects as a manifestation of cardiac ageing. Age and Ageing 2005, 34:343–34910.1093/ageing/afi043Available: http://academic.oup.com/ageing/article/34/4/343/10217/Longitudinal-myocardial-dysfunction-in-healthy.
459. Lu AT, Hannon E, Levine ME, Crimmins EM, Lunnon K, Mill J, Geschwind DH, Horvath S: Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nature Communications 2017, 8:1535310.1038/ncomms15353Available: http://dx.doi.org/10.1038/ncomms15353.
460. Gibson J, Russ TC, Clarke T-K, Howard DM, Hillary RF, Evans KL, Walker RM, Bermingham ML, Morris SW, Campbell A, Hayward C, Murray AD, Porteous DJ, Horvath S, Lu AT, McIntosh AM, Whalley HC, Marioni RE: A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLOS Genetics 2019, 15:e100810410.1371/journal.pgen.1008104Available: http://www.ncbi.nlm.nih.gov/pubmed/31738745.
461. Mccartney DL, Min JL, Richmond RC, Lu AT, Maria K, Davies G, Broer L, Guo X, Jeong A, Kasela S, Katrinli S, Kuo P, Matias- PR, Mishra PP, Nygaard M, Palviainen T, Soerensen M, Sun D, Tsai P, Matthijs D, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Durda P, Elliott HR, Gieger C, Genetics T, Consortium M, et al.: Genome-wide association studies identify 137 loci for DNA methylation biomarkers of ageing. bioRxiv 2020, :1–5010.1101/2020.06.29.133702Available: https://doi.org/10.1101/2020.06.29.133702.
462. Deursen JM van: Senolytic therapies for healthy longevity. Science 2019, 364:636–63710.1126/science.aaw1299Available: https://www.sciencemag.org/lookup/doi/10.1126/science.aaw1299.
463. Gjaltema RAF, Rots MG: Advances of epigenetic editing. Current Opinion in Chemical Biology 2020, 57:75–8110.1016/j.cbpa.2020.04.020Available: https://doi.org/10.1016/j.cbpa.2020.04.020.
464. Ni P, Huang N, Zhang Z, Wang D-P, Liang F, Miao Y, Xiao C-L, Luo F, Wang J: DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 2019, 35:4586–459510.1093/bioinformatics/btz276Available: https://academic.oup.com/bioinformatics/article/35/22/4586/5474907.
465. Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, Lian Y, Fan X, Hu B, Gao Y, Wang X, Wei Y, Liu P, Yan J, Ren X, Yuan P, Yuan Y, Yan Z, Wen L, Yan L, Qiao J, Tang F: Single-cell DNA methylome sequencing of human preimplantation embryos. Nature Genetics 2018, 50:12–1910.1038/s41588-017-0007-6Available: http://dx.doi.org/10.1038/s41588-017-0007-6.
466. Boyle EA, Li YI, Pritchard JK: An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 2017, 169:1177–118610.1016/j.cell.2017.05.038Available: https://linkinghub.elsevier.com/retrieve/pii/S0092867417306293.
467. Langfelder P, Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008, 910.1186/1471-2105-9-559.
468. Blackledge NP, Thomson JP, Skene PJ: CpG Island Chromatin Is Shaped by Recruitment of ZF-CxxC Proteins. Cold Spring Harbor Perspectives in Biology 2013, 5:a018648–a01864810.1101/cshperspect.a018648Available: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a018648.
469. Sijacic P, Holder DH, Bajic M, Deal RB: Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome. PLOS Genetics 2019, 15:e100832610.1371/journal.pgen.1008326Available: https://dx.plos.org/10.1371/journal.pgen.1008326.
470. Hamdani O, Dhillon N, Hsieh T-HS, Fujita T, Ocampo J, Kirkland JG, Lawrimore J, Kobayashi TJ, Friedman B, Fulton D, Wu KY, Chereji RV, Oki M, Bloom K, Clark DJ, Rando OJ, Kamakaka RT: tRNA Genes Affect Chromosome Structure and Function via Local Effects. Molecular and cellular biology 2019, 39:1–2610.1128/MCB.00432-18Available: http://www.ncbi.nlm.nih.gov/pubmed/30718362.
471. Rounge TB, Umu SU, Keller A, Meese E, Ursin G, Tretli S, Lyle R, Langseth H: Circulating small non-coding RNAs associated with age, sex, smoking, body mass and physical activity. Scientific Reports 2018, 8:1–1310.1038/s41598-018-35974-4Available: http://dx.doi.org/10.1038/s41598-018-35974-4.
472. Tellier M, Maudlin I, Murphy S: Transcription and splicing: A two-way street. Wiley Interdisciplinary Reviews: RNA 2020, 1110.1002/wrna.1593.
473. Wieben ED, Aleff RA, Basu S, Sarangi V, Bowman B, McLaughlin IJ, Mills JR, Butz ML, Highsmith EW, Ida CM, Ekholm JM, Baratz KH, Fautsch MP: Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy. PLOS ONE 2019, 14:e021944610.1371/journal.pone.0219446Available: https://dx.plos.org/10.1371/journal.pone.0219446.
474. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW: Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods 2010, 7:461–46510.1038/nmeth.1459Available: http://www.nature.com/articles/nmeth.1459.
475. Price AL, Zaitlen NA, Reich D, Patterson N: New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics 2010, 11:459–46310.1038/nrg2813Available: http://www.nature.com/articles/nrg2813.
476. Jjingo D, Conley AB, Wang J, Mariño-Ramírez L, Lunyak VV, Jordan I: Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression. Mobile DNA 2014, 5:1410.1186/1759-8753-5-14Available: http://mobilednajournal.biomedcentral.com/articles/10.1186/1759-8753-5-14.
477. Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, Yen C-A, Lin S, Lin Y, Qiu Y, Xie W, Yue F, Hariharan M, Ray P, Kuan S, Edsall L, Yang H, Chi NC, Zhang MQ, Ecker JR, Ren B: Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 2015, 518:350–35410.1038/nature14217Available: http://www.ncbi.nlm.nih.gov/pubmed/25693566.
478. Billon P, Côté J: Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 2012, 1819:290–30210.1016/j.bbagrm.2011.10.004Available: http://dx.doi.org/10.1016/j.bbagrm.2011.10.004.
479. Tudge SJ, Watson RA, Brede M: Game theoretic treatments for the differentiation of functional roles in the transition to multicellularity. Journal of Theoretical Biology 2016, 395:161–17310.1016/j.jtbi.2016.01.041Available: http://dx.doi.org/10.1016/j.jtbi.2016.01.041.